Data-Based Inference of Generators for Markov Jump Processes Using Convex Optimization

A variational approach to the estimation of generators for Markov jump processes from discretely sampled data is discussed and generalized. In this approach, one first calculates the spectrum of the discrete maximum likelihood estimator for the transition matrix consistent with the discrete data. Then the generator that best matches the spectrum is determined by solving a convex quadratic minimization problem with linear constraints (quadratic program). Here, we discuss the method in detail and position it in the context of maximum likelihood inference of generators from discretely sampled data. Furthermore, we show how the approach can be generalized to estimation from data sampled at nonconstant time intervals. Finally, we discuss numerical aspects of the algorithm for estimation of processes with high-dimensional state spaces. Numerical examples are presented throughout the paper.

[1]  D. Vere-Jones Markov Chains , 1972, Nature.

[2]  J. Rosenthal,et al.  Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings , 2001 .

[3]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[4]  T. Ferguson A Course in Large Sample Theory , 1996 .

[5]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  Martin Vingron,et al.  Modeling Amino Acid Replacement , 2000, J. Comput. Biol..

[8]  M. Bladt,et al.  Statistical inference for discretely observed Markov jump processes , 2005 .

[9]  Philipp Metzner,et al.  Generator estimation of Markov jump processes based on incomplete observations nonequidistant in time. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Gerardo Toraldo,et al.  On the Solution of Large Quadratic Programming Problems with Bound Constraints , 1991, SIAM J. Optim..

[11]  I Holmes,et al.  An expectation maximization algorithm for training hidden substitution models. , 2002, Journal of molecular biology.

[12]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[13]  W. J. Anderson Continuous-Time Markov Chains , 1991 .

[14]  Eric Vanden-Eijnden,et al.  Fitting timeseries by continuous-time Markov chains: A quadratic programming approach , 2006, J. Comput. Phys..

[15]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[16]  Christof Schütte,et al.  Generator estimation of Markov jump processes , 2007, J. Comput. Phys..

[17]  Eric Vanden-Eijnden,et al.  Reconstruction of diffusions using spectral data from timeseries , 2006 .

[18]  Ren Asmussen,et al.  Fitting Phase-type Distributions via the EM Algorithm , 1996 .

[19]  Roger Fletcher,et al.  Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming , 2005, Numerische Mathematik.

[20]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[21]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[22]  Ana Friedlander,et al.  On the Maximization of a Concave Quadratic Function with Box Constraints , 1994, SIAM J. Optim..

[23]  Thomas G. Kurtz,et al.  A limit theorem for perturbed operator semigroups with applications to random evolutions , 1973 .