A Simple and Scalable Strategy for Analysis of Endogenous Protein Dynamics

[1]  K. Wood,et al.  The luminescent HiBiT peptide enables selective quantitation of G protein–coupled receptor ligand engagement and internalization in living cells , 2020, The Journal of Biological Chemistry.

[2]  Evan G. Williams,et al.  Multi-omic measurements of heterogeneity in HeLa cells across laboratories , 2019, Nature Biotechnology.

[3]  Luís A. Nunes Amaral,et al.  Large-scale investigation of the reasons why potentially important genes are ignored , 2018, PLoS biology.

[4]  Jacob E. Corn,et al.  CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway , 2018, Nature Genetics.

[5]  J. D. Young,et al.  Width and Depth , 2018, Home Studio Mastering.

[6]  Jeroen Krijgsveld,et al.  An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein , 2018, bioRxiv.

[7]  Kris Zimmerman,et al.  CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide. , 2017, ACS chemical biology.

[8]  Hanlee P. Ji,et al.  Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562 , 2017, bioRxiv.

[9]  J. Corn,et al.  Genome editing via delivery of Cas9 ribonucleoprotein. , 2017, Methods.

[10]  D. Baltimore,et al.  30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology , 2017, Cell.

[11]  S. Bray Notch signalling in context , 2016, Nature Reviews Molecular Cell Biology.

[12]  Bo Huang,et al.  A scalable strategy for high-throughput GFP tagging of endogenous human proteins , 2016, Proceedings of the National Academy of Sciences.

[13]  Ekaterina V. Poverennaya,et al.  The Size of the Human Proteome: The Width and Depth , 2016, International journal of analytical chemistry.

[14]  Luke A. Gilbert,et al.  Versatile protein tagging in cells with split fluorescent protein , 2016, Nature Communications.

[15]  John J. Wyrick,et al.  Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro. , 2015, Biochemistry.

[16]  H. Moriya,et al.  Quantitative nature of overexpression experiments , 2015, Molecular biology of the cell.

[17]  J. Hayes,et al.  A brief review of nucleosome structure , 2015, FEBS letters.

[18]  J. Mayerle,et al.  Lysosome-Associated Membrane Proteins (LAMP) Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop Pancreatitis , 2015, Cellular and molecular gastroenterology and hepatology.

[19]  A. McDonough,et al.  Considerations when quantitating protein abundance by immunoblot. , 2015, American journal of physiology. Cell physiology.

[20]  Na Ye,et al.  Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1) , 2014, Journal of medicinal chemistry.

[21]  Wan-Wan Lin,et al.  Regulation of c-Fos Gene Expression by NF-κB: A p65 Homodimer Binding Site in Mouse Embryonic Fibroblasts but Not Human HEK293 Cells , 2013, PloS one.

[22]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[23]  B. Giepmans,et al.  Immunolabeling artifacts and the need for live-cell imaging , 2012, Nature Methods.

[24]  Konstantin G. Chernov,et al.  The C Terminus of Tubulin, a Versatile Partner for Cationic Molecules , 2010, The Journal of Biological Chemistry.

[25]  S. Ghosh,et al.  The NF-kappaB family of transcription factors and its regulation. , 2009, Cold Spring Harbor perspectives in biology.

[26]  L. Kenner,et al.  Translational regulation mechanisms of AP-1 proteins. , 2009, Mutation research.

[27]  T. Terwilliger,et al.  Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein , 2005, Nature Biotechnology.

[28]  T. Shiomi,et al.  Membrane-type 1 Matrix Metalloproteinase Cytoplasmic Tail-binding Protein-1 Is a New Member of the Cupin Superfamily , 2004, Journal of Biological Chemistry.

[29]  R. Kaufman Overview of vector design for mammalian gene expression , 2000, Methods in molecular biology.