Glioblastoma Stem Cells: Driving Resilience through Chaos.

[1]  Jeffrey H. Chuang,et al.  BMP signaling mediates glioma stem cell quiescence and confers treatment resistance in glioblastoma , 2019, Scientific Reports.

[2]  Mariella G. Filbin,et al.  An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma , 2019, Cell.

[3]  F. Azuaje,et al.  Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment , 2019, Nature Communications.

[4]  Andrew R. Morton,et al.  Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma , 2019, The Journal of experimental medicine.

[5]  Bin Zhang,et al.  Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment , 2019, EBioMedicine.

[6]  Warren A. Cheung,et al.  H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis , 2019, Nature Communications.

[7]  Leighton J. Core,et al.  Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme , 2018, Nature Genetics.

[8]  Martin Klein,et al.  Lomustine and Bevacizumab in Progressive Glioblastoma , 2017, The New England journal of medicine.

[9]  G. Finocchiaro,et al.  Genetic Evolution of Glioblastoma Stem‐Like Cells From Primary to Recurrent Tumor , 2017, Stem cells.

[10]  Lisa C. Wallace,et al.  Targeting Glioma Stem Cells through Combined BMI1 and EZH2 Inhibition , 2017, Nature Medicine.

[11]  Richard A. Moore,et al.  Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy , 2017, Nature.

[12]  C. Brennan,et al.  Genetic driver mutations define the expression signature and microenvironmental composition of high‐grade gliomas , 2017, Glia.

[13]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[14]  Bradley E. Bernstein,et al.  Transcription elongation factors represent in vivo cancer dependencies in glioblastoma , 2017, Nature.

[15]  Ning Liu,et al.  Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth , 2016, Cell.

[16]  L. Farinelli,et al.  Human tissue engineering allows the identification of active miRNA regulators of glioblastoma aggressiveness. , 2016, Biomaterials.

[17]  S. Cichon,et al.  Functional Subclone Profiling for Prediction of Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma , 2016, Clinical Cancer Research.

[18]  Paul Bertone,et al.  EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells , 2016, eLife.

[19]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[20]  Lin Zhao,et al.  The Error-Prone DNA Polymerase κ Promotes Temozolomide Resistance in Glioblastoma through Rad17-Dependent Activation of ATR-Chk1 Signaling. , 2016, Cancer research.

[21]  Qiulian Wu,et al.  A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. , 2016, Cancer research.

[22]  Nicolai J. Birkbak,et al.  Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade , 2016, Science.

[23]  I. Nakano,et al.  Senescence from glioma stem cell differentiation promotes tumor growth. , 2016, Biochemical and biophysical research communications.

[24]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[25]  G. Bergers,et al.  Glioblastoma: Defining Tumor Niches. , 2015, Trends in cancer.

[26]  Andrew E. Teschendorff,et al.  Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest , 2015, Stem cell reports.

[27]  C. Watts,et al.  Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells. , 2015, Cancer research.

[28]  Nupur K. Das,et al.  Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. , 2015, Cancer cell.

[29]  Herrera-PerezMarisol,et al.  Extracellular Matrix Properties Regulate the Migratory Response of Glioblastoma Stem Cells in Three-Dimensional Culture. , 2015 .

[30]  Chengjun Yao,et al.  RETRACTED ARTICLE: CXCL12/CXCR4 Axis Upregulates Twist to Induce EMT in Human Glioblastoma , 2015, Molecular Neurobiology.

[31]  J. Rich,et al.  Cancer stem cells in glioblastoma , 2015, Genes & development.

[32]  Pallavi Sontakke,et al.  Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. , 2015, Cancer letters.

[33]  Deric M. Park,et al.  The Evidence of Glioblastoma Heterogeneity , 2015, Scientific Reports.

[34]  Gary D Bader,et al.  Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity , 2015, Proceedings of the National Academy of Sciences.

[35]  J. Rickus,et al.  Extracellular Matrix Properties Regulate the Migratory Response of Glioblastoma Stem Cells in Three-Dimensional Culture. , 2015, Tissue engineering. Part A.

[36]  B. Rogister,et al.  Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. , 2015, Neuro-oncology.

[37]  J. D. de Groot,et al.  Antiangiogenic Therapy for Glioblastoma: Current Status and Future Prospects , 2014, Clinical Cancer Research.

[38]  I. Herman,et al.  Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics. , 2014, American journal of physiology. Cell physiology.

[39]  Jennifer L West,et al.  Modeling the tumor extracellular matrix: Tissue engineering tools repurposed towards new frontiers in cancer biology. , 2014, Journal of biomechanics.

[40]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[41]  C. Ficorella,et al.  Hypoxia sustains glioblastoma radioresistance through ERKs/DNA-PKcs/HIF-1α functional interplay. , 2014, International journal of oncology.

[42]  Peter Sollich,et al.  Signalling entropy: A novel network-theoretical framework for systems analysis and interpretation of functional omic data. , 2014, Methods.

[43]  Simon Kasif,et al.  Reconstructing and Reprogramming the Tumor-Propagating Potential of Glioblastoma Stem-like Cells , 2014, Cell.

[44]  Atique U. Ahmed,et al.  Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy , 2014, Cell Death and Differentiation.

[45]  K. Hoang-Xuan,et al.  Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[46]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[47]  B. Ross,et al.  Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules , 2014, Cell.

[48]  L. Ricci-Vitiani,et al.  Pharmacological inhibition of poly(ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide , 2014, BMC Cancer.

[49]  Xiangrong Chen,et al.  ADAM17 promotes U87 glioblastoma stem cell migration and invasion , 2013, Brain Research.

[50]  L. Deangelis,et al.  Glioblastoma and other malignant gliomas: a clinical review. , 2013, JAMA.

[51]  S. Severini,et al.  Cellular network entropy as the energy potential in Waddington's differentiation landscape , 2013, Scientific Reports.

[52]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[53]  Amy Brock,et al.  Non-Darwinian dynamics in therapy-induced cancer drug resistance , 2013, Nature Communications.

[54]  Se Hoon Kim,et al.  Mesenchymal differentiation mediated by NF-κB promotes radiation resistance in glioblastoma. , 2013, Cancer cell.

[55]  G. Semenza,et al.  HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. , 2013, The Journal of clinical investigation.

[56]  Andrew E. Sloan,et al.  Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake , 2013, Nature Neuroscience.

[57]  Ben D. MacArthur,et al.  Statistical Mechanics of Pluripotency , 2013, Cell.

[58]  Simon Kasif,et al.  An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. , 2013, Cell reports.

[59]  S. Beck,et al.  Cell surface Nestin is a biomarker for glioma stem cells. , 2013, Biochemical and biophysical research communications.

[60]  R. McLendon,et al.  Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth , 2013, Cell.

[61]  Michael D. Brooks,et al.  Hitting Them Where They Live: Targeting the Glioblastoma Perivascular Stem Cell Niche , 2013, Current Pathobiology Reports.

[62]  G. Pelicci,et al.  Cancer stem cell contribution to glioblastoma invasiveness , 2013, Stem Cell Research & Therapy.

[63]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[64]  G. Bergers,et al.  Mechanisms of evasive resistance to anti-VEGF therapy in glioblastoma. , 2013, CNS oncology.

[65]  G. Bianconi,et al.  Differential network entropy reveals cancer system hallmarks , 2012, Scientific Reports.

[66]  C. Gondi,et al.  Glioma stem cell invasion through regulation of the interconnected ERK, integrin α6 and N-cadherin signaling pathway. , 2012, Cellular signalling.

[67]  C. Furusawa,et al.  A Dynamical-Systems View of Stem Cell Biology , 2012, Science.

[68]  Rune Linding,et al.  Navigating cancer network attractors for tumor-specific therapy , 2012, Nature Biotechnology.

[69]  M. Barcellos-Hoff,et al.  Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. , 2012, Cancer research.

[70]  Tzong-Shiue Yu,et al.  A restricted cell population propagates glioblastoma growth following chemotherapy , 2012, Nature.

[71]  T. Tokuyasu,et al.  Microarray Analysis Verifies Two Distinct Phenotypes of Glioblastomas Resistant to Antiangiogenic Therapy , 2012, Clinical Cancer Research.

[72]  D. Piwnica-Worms,et al.  CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma , 2012, PloS one.

[73]  Peter Dirks,et al.  Cancer stem cells: an evolving concept , 2012, Nature Reviews Cancer.

[74]  R. Hu,et al.  HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway , 2011, Cell Death and Differentiation.

[75]  F. DiMeco,et al.  Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. , 2011, Cancer research.

[76]  P. Mischel,et al.  Metabolic state of glioma stem cells and nontumorigenic cells , 2011, Proceedings of the National Academy of Sciences.

[77]  E. Lander,et al.  Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells , 2011, Cell.

[78]  D. Schiffer,et al.  SOX2 expression and amplification in gliomas and glioma cell lines. , 2011, Cancer genomics & proteomics.

[79]  Qiulian Wu,et al.  Elevated invasive potential of glioblastoma stem cells. , 2011, Biochemical and biophysical research communications.

[80]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[81]  Qiulian Wu,et al.  L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1 , 2011, The EMBO journal.

[82]  Mauro Biffoni,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[83]  M. Russo,et al.  Pro-inflammatory gene expression in solid glioblastoma microenvironment and in hypoxic stem cells from human glioblastoma , 2011, Journal of Neuroinflammation.

[84]  P. Dirks,et al.  Brain tumor stem cells: The cancer stem cell hypothesis writ large , 2010, Molecular oncology.

[85]  C. Zimmer,et al.  Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. , 2010, Neuro-oncology.

[86]  A. Ruiz i Altaba,et al.  NANOG regulates glioma stem cells and is essential in vivo acting in a cross‐functional network with GLI1 and p53 , 2010, The EMBO journal.

[87]  R. McLendon,et al.  Integrin alpha 6 regulates glioblastoma stem cells. , 2010, Cell stem cell.

[88]  Serban Nacu,et al.  A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. , 2010, Cancer cell.

[89]  M. Wolter,et al.  A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. , 2010, Brain : a journal of neurology.

[90]  Alberto Ferri,et al.  HIF1-positive and HIF1-negative glioblastoma cells compete in vitro but cooperate in tumor growth in vivo. , 2010, International journal of oncology.

[91]  Y. Marie,et al.  A New Alternative Mechanism in Glioblastoma Vascularization: Tubular Vasculogenic Mimicry , 2022 .

[92]  T. Halazonetis,et al.  Genomic instability — an evolving hallmark of cancer , 2010, Nature Reviews Molecular Cell Biology.

[93]  R. Spang,et al.  Transcriptional profiles of CD133+ and CD133- glioblastoma-derived cancer stem cell lines suggest different cells of origin. , 2010, Cancer research.

[94]  C. Brennan,et al.  Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. , 2010, Cell stem cell.

[95]  Wei Keat Lim,et al.  The transcriptional network for mesenchymal transformation of brain tumors , 2009, Nature.

[96]  B. Sullenger,et al.  Notch Promotes Radioresistance of Glioma Stem Cells , 2009, Stem cells.

[97]  J. Dopazo,et al.  FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status* , 2009, The Journal of Biological Chemistry.

[98]  R. McLendon,et al.  The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype , 2009, Cell cycle.

[99]  B. Cochran,et al.  STAT3 Is Required for Proliferation and Maintenance of Multipotency in Glioblastoma Stem Cells , 2009, Stem cells.

[100]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[101]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[102]  C. Furusawa,et al.  Chaotic expression dynamics implies pluripotency: when theory and experiment meet , 2009, Biology Direct.

[103]  Hannah H. Chang,et al.  Transcriptome-wide noise controls lineage choice in mammalian progenitor cells , 2008, Nature.

[104]  C. Cordon-Cardo,et al.  Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas. , 2008, Cancer research.

[105]  Sonja J. Prohaska,et al.  “Genes” , 2008, Theory in Biosciences.

[106]  A. Gregory Sorensen,et al.  Angiogenesis in brain tumours , 2007, Nature Reviews Neuroscience.

[107]  Hongye Liu,et al.  Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma , 2007, Neuron.

[108]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[109]  K. Black,et al.  Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma , 2006, Molecular Cancer.

[110]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[111]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[112]  Brian Keith,et al.  HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. , 2006, Genes & development.

[113]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[114]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[115]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[116]  C. Furusawa,et al.  Theory of robustness of irreversible differentiation in a stem cell system: chaos hypothesis. , 2000, Journal of theoretical biology.

[117]  G. Semenza,et al.  Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 , 1996, Molecular and cellular biology.

[118]  S. Kauffman Differentiation of malignant to benign cells. , 1971, Journal of theoretical biology.