Two-Sided Charts for Monitoring Nonconforming Parts per Million

Processes with a low fraction of nonconforming units are known as high-yield processes. These processes produce a small number of nonconforming parts per million. Traditional methods for monitoring the fraction of nonconforming units such as the binomial and geometric control charts with probability limits are not effective. In order to properly monitor these processes, we propose new two-sided geometric-based control charts. In this article we show how to design, analyze, and evaluate their performance. We conclude that these new charts outperform other geometric charts suggested in the literature.

[1]  Lloyd S. Nelson SUPPLEMENTARY RUNS TESTS FOR NP CONTROL CHARTS , 1997 .

[2]  Joseph J. Pignatiello,et al.  ARL-Design of S Charts with k-of-k Runs Rules , 2009, Commun. Stat. Simul. Comput..

[3]  Arthur B. Yeh,et al.  EWMA control charts for monitoring high-yield processes based on non-transformed observations , 2008 .

[4]  K. Govindaraju,et al.  On the Statistical Design of Geometric Control Charts , 2004 .

[5]  Robert B. Davis,et al.  Improving the performance of the zone control chart , 1994 .

[6]  John H . Reynolds,et al.  The Run Sum Control Chart Procedure , 1971 .

[7]  T. Calvin,et al.  Quality Control Techniques for "Zero Defects" , 1983 .

[8]  Thong Ngee Goh,et al.  ON OPTIMAL SETTING OF CONTROL LIMITS FOR GEOMETRIC CHART , 2000 .

[9]  Robert B. Davis,et al.  Performance of the zone control chart , 1990 .

[10]  James M. Lucas,et al.  Detecting improvement using Shewhart attribute control charts when the lower control limit is zero , 2006 .

[11]  Rassoul Noorossana,et al.  On the conditional decision procedure for high yield processes , 2007, Comput. Ind. Eng..

[12]  Patrick D. Bourke,et al.  Detecting a shift in fraction nonconforming using runlength control charts with 100% inspection , 1991 .

[13]  Fah Fatt Gan,et al.  CUMULATIVE SUM CHARTS FOR HIGH YIELD PROCESSES , 2001 .

[14]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[15]  Loon Ching Tang,et al.  Cumulative conformance count chart with sequentially updated parameters , 2004 .

[16]  Cesar A. Acosta-Mejia On the performance of the conditional decision procedure in geometric charts , 2011, Comput. Ind. Eng..

[17]  Charles W. Champ,et al.  An Analysis of the Run Sum Control Chart , 1997 .

[18]  Thong Ngee Goh,et al.  STATISTICAL PROCESS CONTROL FOR LOW NONCONFORMITY PROCESSES , 1995 .

[19]  A. Di Bucchianico,et al.  Monitoring Infrequent Failures of High‐volume Production Processes , 2005 .

[20]  Janet M. Twomey,et al.  A Sequential Bayesian Cumulative Conformance Count Approach to Deterioration Detection in High Yield Processes , 2012, Qual. Reliab. Eng. Int..

[21]  Michael B. C. Khoo Increasing the Sensitivity of Control Chart for Fraction Nonconforming , 2003 .

[22]  Thong Ngee Goh,et al.  Cumulative probability control charts for geometric and exponential process characteristics , 2002 .

[23]  Thong Ngee Goh,et al.  A two-stage decision procedure for monitoring processes with low fraction nonconforming , 2003, Eur. J. Oper. Res..

[24]  Charles P. Quesenberry,et al.  Geometric Q Charts for High Quality Processes , 1995 .