Logic Synthesis for Quantum Computing

We present a synthesis framework to map logic networks into quantum circuits for quantum computing. The synthesis framework is based on LUT networks (lookup-table networks), which play a key role in conventional logic synthesis. Establishing a connection between LUTs in a LUT network and reversible single-target gates in a reversible network allows us to bridge conventional logic synthesis with logic synthesis for quantum computing, despite several fundamental differences. We call our synthesis framework LUT-based Hierarchical Reversible Logic Synthesis (LHRS). Input to LHRS is a classical logic network; output is a quantum network (realized in terms of Clifford+$T$ gates). The framework offers to trade-off the number of qubits for the number of quantum gates. In a first step, an initial network is derived that only consists of single-target gates and already completely determines the number of qubits in the final quantum network. Different methods are then used to map each single-target gate into Clifford+$T$ gates, while aiming at optimally using available resources. We demonstrate the effectiveness of our method in automatically synthesizing IEEE compliant floating point networks up to double precision. As many quantum algorithms target scientific simulation applications, they can make rich use of floating point arithmetic components. But due to the lack of quantum circuit descriptions for those components, it can be difficult to find a realistic cost estimation for the algorithms. Our synthesized benchmarks provide cost estimates that allow quantum algorithm designers to provide the first complete cost estimates for a host of quantum algorithms. Thus, the benchmarks and, more generally, the LHRS framework are an essential step towards the goal of understanding which quantum algorithms will be practical in the first generations of quantum computers.

[1]  P. Coveney,et al.  Scalable Quantum Simulation of Molecular Energies , 2015, 1512.06860.

[2]  Mariusz Rawski Application of Functional Decomposition in Synthesis of Reversible Circuits , 2015, RC.

[3]  Jason Cong,et al.  Cut ranking and pruning: enabling a general and efficient FPGA mapping solution , 1999, FPGA '99.

[4]  Gerhard W. Dueck,et al.  A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[5]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[6]  Giovanni De Micheli,et al.  Majority-Inverter Graph: A New Paradigm for Logic Optimization , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Jason Cong,et al.  On Area/Depth Trade-off in LUT-Based FPGA Technology Mapping , 1993, 30th ACM/IEEE Design Automation Conference.

[8]  G. Bioul Minimization of ring-sum expansion of Boolean functions , 1973 .

[9]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[10]  Charles H. Bennett Time/Space Trade-Offs for Reversible Computation , 1989, SIAM J. Comput..

[11]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[12]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[13]  Michael A. Harrison,et al.  The Number of Equivalence Classes of Boolean Functions Under Groups Containing Negation , 1963, IEEE Trans. Electron. Comput..

[14]  Robert K. Brayton,et al.  ABC: An Academic Industrial-Strength Verification Tool , 2010, CAV.

[15]  Martin Rötteler,et al.  Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits , 2014, Quantum Inf. Comput..

[16]  Malay K. Ganai,et al.  Robust Boolean reasoning for equivalence checking and functional property verification , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[17]  Robert K. Brayton,et al.  Mapping into LUT structures , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[18]  Hamid R. Arabnia,et al.  Combined Integer and Floating Point Multiplication Architecture(CIFM) for FPGAs and Its Reversible Logic Implementation , 2006, 2006 49th IEEE International Midwest Symposium on Circuits and Systems.

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  Jason Cong,et al.  FlowMap: an optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  Giovanni De Micheli,et al.  The EPFL Combinational Benchmark Suite , 2015 .

[23]  Siu Man Chan Just a Pebble Game , 2013, 2013 IEEE Conference on Computational Complexity.

[24]  T. Monz,et al.  Real-time dynamics of lattice gauge theories with a few-qubit quantum computer , 2016, Nature.

[25]  M. Thornton,et al.  ESOP-based Toffoli Gate Cascade Generation , 2007, 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.

[26]  Bruno Schmitt SAT-Based Area Recovery in Technology Mapping , 2017 .

[27]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[28]  Stefan Frehse,et al.  RevKit: A Toolkit for Reversible Circuit Design , 2012, J. Multiple Valued Log. Soft Comput..

[29]  Richard Královic Time and space complexity of reversible pebbling , 2004, RAIRO Theor. Informatics Appl..

[30]  Giovanni De Micheli,et al.  Hierarchical reversible logic synthesis using LUTs , 2017, 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).

[31]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[32]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[33]  Jason Cong,et al.  DAOmap: a depth-optimal area optimization mapping algorithm for FPGA designs , 2004, ICCAD 2004.

[34]  Rolf Drechsler,et al.  Mapping NCV Circuits to Optimized Clifford+T Circuits , 2014, RC.

[35]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[36]  Martin Rötteler,et al.  Reversible circuit compilation with space constraints , 2015, ArXiv.

[37]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[38]  Robert K. Brayton,et al.  Fast-extract with cube hashing , 2017, 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC).

[39]  Stephen Dean Brown,et al.  Heuristics for Area Minimization in LUT-Based FPGA Technology Mapping , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[40]  Giovanni De Micheli,et al.  Design automation and design space exploration for quantum computers , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[41]  George K. Papakonstantinou,et al.  A fast and efficient heuristic ESOP minimization algorithm , 2004, GLSVLSI '04.

[42]  Robert Wille,et al.  Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition , 2010, 2010 5th International Design and Test Workshop.

[43]  Tsutomu Sasao And-Exor Expressions and their Optimization , 1993 .

[44]  Guowu Yang,et al.  Computing Affine Equivalence Classes of Boolean Functions by Group Isomorphism , 2016, IEEE Transactions on Computers.

[45]  Sungmin Cho,et al.  Combinational and sequential mapping with priority cuts , 2007, ICCAD 2007.

[46]  Dmitri Maslov,et al.  On the advantages of using relative phase Toffolis with an application to multiple control Toffoli optimization , 2015, ArXiv.

[47]  A. Mishchenko,et al.  Fast Heuristic Minimization of Exclusive-Sums-of-Products , 2001 .

[48]  Alexis De Vos,et al.  Young subgroups for reversible computers , 2008, Adv. Math. Commun..

[49]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[50]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[51]  Jean-Pierre Deschamps,et al.  Discrete and switching functions , 1978 .

[52]  Robert K. Brayton,et al.  Improvements to Technology Mapping for LUT-Based FPGAs , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[53]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[54]  Marek A. Perkowski,et al.  Minimization of exclusive sum-of-products expressions for multiple-valued input, incompletely specified functions , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[55]  M. Harrison On the Classification of Boolean Functions by the General Linear and Affine Groups , 1964 .

[56]  Annie Y. Wei,et al.  Exponentially more precise quantum simulation of fermions in second quantization , 2015, 1506.01020.

[57]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[58]  Rodney Van Meter,et al.  A Resource-Efficient Design for a Reversible Floating Point Adder in Quantum Computing , 2014, JETC.

[59]  Rolf Drechsler,et al.  Technology Mapping of Reversible Circuits to Clifford+T Quantum Circuits , 2016, 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL).

[60]  Robert Wille,et al.  Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques , 2009, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[61]  Rolf Drechsler Preudo-Kronecker Expressions for Symmetric Functions , 1999, IEEE Trans. Computers.

[62]  Pawel Wocjan,et al.  Efficient circuits for quantum walks , 2009, Quantum Inf. Comput..

[63]  Mathias Soeken,et al.  Unlocking efficiency and scalability of reversible logic synthesis using conventional logic synthesis , 2016, 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[64]  Maris Ozols,et al.  Quantum rejection sampling , 2011, ITCS '12.

[65]  Michele Mosca,et al.  Parallelizing quantum circuit synthesis , 2016, 1606.07413.

[66]  Giovanni De Micheli,et al.  Enumeration of Reversible Functions and Its Application to Circuit Complexity , 2016, RC.

[67]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[68]  Jayalal Sarma,et al.  Reversible Pebble Game on Trees , 2015, COCOON.