Asymptotically exact bounds on the size of high-order spectral-null codes

The spectral-null code S(n, k) of kth order and length n is the union of n-tuples with /spl plusmn/1 components, having kth-order spectral-null at zero frequency. We determine the exact asymptotic in n behavior of the size of such codes. In particular, we prove that for n satisfying some divisibility conditions, log/sub 2/|S(n, k)|=n-k/sup 2//2log/sub 2/n+c/sub k/+o(1), where c/sub k/ is a constant depending only on k and o(1) tends to zero when n grows. This is an improvement on the earlier known bounds due to Roth, Siegel, and Vardy (see ibid., vol40, p.1826-40, 1994).

[1]  Ron M. Roth,et al.  Efficient Encoding Algorithm for Third-Order Spectral-Null Codes , 1998, IEEE Trans. Inf. Theory.

[2]  David W. Boyd,et al.  On a problem of Byrnes concerning polynomials with restricted coefficients , 1997, Math. Comput..

[3]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[4]  Gregory A. Freiman,et al.  Partitions into distinct large parts , 1994 .

[5]  A. Vardy,et al.  High-order spectral-null codes: constructions and bounds , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[6]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[7]  Evangelos Eleftheriou,et al.  On codes satisfying M th-order running digital sum constraints , 1991, IEEE Trans. Inf. Theory.

[8]  É. Lucas,et al.  Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques suivant un module premier , 1878 .

[9]  S. Al-Bassam,et al.  On efficient high-order spectral-null codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[10]  Kees A. Schouhamer Immink,et al.  Binary transmission codes with higher order spectral zeros at zero frequency , 1987, IEEE Trans. Inf. Theory.

[11]  D. J. Newman,et al.  Null steering employing polynomials and restricted coefficients , 1988 .

[12]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[13]  Carlo M. Monti,et al.  Codes with a multiple spectral null at zero frequency , 1989, IEEE Trans. Inf. Theory.

[14]  Ron M. Roth Spectral-Null Codes and Null Spaces of Hadamard Submatrices , 1996, Des. Codes Cryptogr..

[15]  Gregory A. Freiman AN ANALYTICAL METHOD OF ANALYSIS OF LINEAR BOOLEAN EQUATIONS , 1980 .

[16]  Paul H. Siegel,et al.  High-order spectral-null codes - Construction and bounds , 1994, IEEE Trans. Inf. Theory.

[17]  G. Harman INTRODUCTION TO ANALYTIC NUMBER THEORY (Translations of Mathematical Monographs 68) , 1989 .

[18]  Bella Bose,et al.  On efficient high-order spectral-null codes , 1999, IEEE Trans. Inf. Theory.

[19]  J. S. Byrnes Problems on Polynomials with Restricted Coefficients Arising from Questions in Antenna Array Theory , 1990 .

[20]  Kees Schouhamer-Immink Coding Techniques for Digital Recorders , 1991 .

[21]  Paul H. Siegel,et al.  Matched spectral-null codes for partial-response channels , 1989, IEEE Trans. Inf. Theory.

[22]  N. M. Korobov Exponential Sums and their Applications , 1992 .

[23]  W. B. History of the Theory of Numbers , Nature.

[24]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .