Organizing network action for locomotion: Insights from studying insect walking

[1]  K. D. Roeder The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.) , 1937 .

[2]  J. Pringle Proprioception In Insects: II. The Action Of The Campaniform Sensilla On The Legs , 1938 .

[3]  F. Plum Handbook of Physiology. , 1960 .

[4]  K. Pearson,et al.  Discharge patterns of coxal levator and depressor motoneurones of the cockroach, Periplaneta americana. , 1970, The Journal of experimental biology.

[5]  M. Burns THE CONTROL OF WALKING IN ORTHOPTERA I. LEG MOVEMENTS IN NORMAL WALKING , 1973 .

[6]  S. Rossignol,et al.  On the initiation of the swing phase of locomotion in chronic spinal cats , 1978, Brain Research.

[7]  C. Pratt,et al.  Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input , 1979, Brain Research.

[8]  H. Cruse,et al.  COORDINATED WALKING OF STICK INSECTS ON A MERCURY SURFACE , 1981 .

[9]  U. Bässler,et al.  Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra , 1982 .

[10]  U. Bässler,et al.  Motor Output of the Denervated Thoracic Ventral Nerve Cord in the Stick Insect Carausius Morosus , 1983 .

[11]  Professor Dr. Ulrich Bässler Neural Basis of Elementary Behavior in Stick Insects , 1983, Studies of Brain Function.

[12]  J. Halbertsma The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. , 1983, Acta physiologica Scandinavica. Supplementum.

[13]  S. Grillner,et al.  The effect of dorsal root transection on the efferent motor pattern in the cat's hindlimb during locomotion. , 1984, Acta physiologica Scandinavica.

[14]  S. Grillner,et al.  Dorsal and ventral myotome motoneurons and their input during fictive locomotion in lamprey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  S. Soffe,et al.  Synaptic potentials in motoneurons during fictive swimming in spinal Xenopus embryos. , 1985, Journal of neurophysiology.

[16]  D. Graham,et al.  Behaviour and Motor Output for an Insect Walking on a Slippery Surface: II. Backward Walking , 1985 .

[17]  D. Graham Pattern and Control of Walking in Insects , 1985 .

[18]  H. Cruse Which parameters control the leg movement of a walking insect? II: The start of the swing phase , 1985 .

[19]  S. Soffe,et al.  Spinal Interneurones and Swimming in Frog Embryos , 1986 .

[20]  S. Zill A model of pattern generation of cockroach walking reconsidered. , 1986, Journal of neurobiology.

[21]  P. Stein,et al.  Neurobiology of Vertebrate Locomotion , 1986, Wenner-Gren Center International Symposium Series.

[22]  U. Bssler Afferent control of walking movements in the stick insectCuniculina impigra: II. Reflex reversal and the release of the swing phase in the restrained foreleg , 1986 .

[23]  A. Chrachri,et al.  Induction of rhythmic activity in motoneurons of crayfish thoracic ganglia by cholinergic agonists , 1987, Neuroscience Letters.

[24]  U. Bässler Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences , 1988 .

[25]  J. Smith,et al.  Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies. , 1990, Journal of neurophysiology.

[26]  A. Chrachri,et al.  Fictive locomotion in the fourth thoracic ganglion of the crayfish, Procambarus clarkii , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  H. Cruse What mechanisms coordinate leg movement in walking arthropods? , 1990, Trends in Neurosciences.

[28]  S. Grillner,et al.  Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord. , 1992, Journal of neurophysiology.

[29]  S. Ryckebusch,et al.  Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. , 1993, Journal of neurophysiology.

[30]  K. Pearson Common principles of motor control in vertebrates and invertebrates. , 1993, Annual review of neuroscience.

[31]  K. Sillar,et al.  Control of frequency during swimming in Xenopus embryos: a study on interneuronal recruitment in a spinal rhythm generator. , 1993, The Journal of physiology.

[32]  H. Pflüger,et al.  Motor patterns for horizontal and upside down walking and vertical climbing in the locust , 1995, The Journal of experimental biology.

[33]  J. Schmitz,et al.  Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine , 1995, The Journal of experimental biology.

[34]  P. Stein,et al.  Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of fictive rostral scratching , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  A. Büschges Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. , 1995, Journal of neurobiology.

[36]  P. Katz Neurons, Networks, and Motor Behavior , 1996, Neuron.

[37]  R. Levine,et al.  Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta. , 1996, Journal of neurophysiology.

[38]  K. Pearson,et al.  Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. , 1996, Journal of neurophysiology.

[39]  J. Coast Handbook of Physiology. Section 12. Exercise: Regulation and Integration of Multiple Systems , 1997 .

[40]  R. Stein,et al.  Identification, Localization, and Modulation of Neural Networks for Walking in the Mudpuppy (Necturus Maculatus) Spinal Cord , 1998, The Journal of Neuroscience.

[41]  F. Lacquaniti,et al.  Motor patterns for human gait: backward versus forward locomotion. , 1998, Journal of neurophysiology.

[42]  A. Büschges Inhibitory synaptic drive patterns motoneuronal activity in rhythmic preparations of isolated thoracic ganglia in the stick insect , 1998, Brain Research.

[43]  A. Büschges,et al.  Sensory pathways and their modulation in the control of locomotion , 1998, Current Opinion in Neurobiology.

[44]  U. Bässler,et al.  Pattern generation for stick insect walking movements—multisensory control of a locomotor program , 1998, Brain Research Reviews.

[45]  A E Patla,et al.  Is backward stepping over obstacles achieved through a simple temporal reversal of forward stepping? , 1998, The International journal of neuroscience.

[46]  A. Roberts,et al.  Central Circuits Controlling Locomotion in Young Frog Tadpoles , 1998, Annals of the New York Academy of Sciences.

[47]  S Grillner,et al.  Simulations of neuromuscular control in lamprey swimming. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  K. Pearson,et al.  Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate Cat. , 1999, Journal of neurophysiology.

[49]  A. Büschges,et al.  Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. , 1999, Journal of neurophysiology.

[50]  J. Schmitz,et al.  Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. , 1999, Journal of neurophysiology.

[51]  F. Clarac,et al.  Central control components of a ‘simple’ stretch reflex , 2000, Trends in Neurosciences.

[52]  J Schmidt,et al.  Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. , 2001, Journal of neurophysiology.

[53]  U. Bässler,et al.  The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. , 2001, Journal of neurophysiology.

[54]  Roy E. Ritzmann,et al.  Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics , 2002, Journal of Comparative Physiology A.

[55]  R. Levine,et al.  Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae , 2002, Invertebrate Neuroscience.

[56]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[57]  Dirk Bucher,et al.  Interjoint coordination in the stick insect leg-control system: the role of positional signaling. , 2003, Journal of neurophysiology.

[58]  S. Grillner,et al.  Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. , 2003, Journal of neurophysiology.

[59]  U. Bässler,et al.  Vibration signals from the FT joint can induce phase transitions in both directions in motoneuron pools of the stick insect walking system. , 2003, Journal of neurobiology.

[60]  Ulrich Bässler,et al.  The walking-(and searching-) pattern generator of stick insects, a modular system composed of reflex chains and endogenous oscillators , 1993, Biological Cybernetics.

[61]  W. Davis,et al.  Neuronal control of locomotion in the lobster,Homarus americanus , 2004, Journal of comparative physiology.

[62]  A. Büschges,et al.  Dynamic simulation of insect walking. , 2004, Arthropod structure & development.

[63]  F. Delcomyn Activity and directional sensitivity of leg campaniform sensilla in a stick insect , 2004, Journal of Comparative Physiology A.

[64]  S. Grillner,et al.  On the central generation of locomotion in the low spinal cat , 1979, Experimental Brain Research.

[65]  W. Davis,et al.  Neuronal control of locomotion in the lobsterHomarus americanus , 2004, Journal of comparative physiology.

[66]  G. Wendler Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen , 1964, Zeitschrift für vergleichende Physiologie.

[67]  J. Schmitz,et al.  Identified nonspiking interneurons in leg reflexes and during walking in the stick insect , 1994, Journal of Comparative Physiology A.

[68]  J. Schmitz,et al.  Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. , 2004, Journal of neurophysiology.

[69]  R. Quinn,et al.  Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. , 2004, Arthropod structure & development.

[70]  A. Büschges,et al.  Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system , 2004, The European journal of neuroscience.

[71]  J. Schmitz,et al.  Load sensing and control of posture and locomotion. , 2004, Arthropod structure & development.

[72]  F. Clarac,et al.  Invertebrate presynaptic inhibition and motor control , 1996, Experimental Brain Research.

[73]  D. Graham A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus) , 1972, Journal of comparative physiology.

[74]  F. Clarac,et al.  Basic processes of locomotor coordination in the rock lobster , 1986, Biological Cybernetics.

[75]  P. Wallén,et al.  Origin of phasic synaptic inhibition in myotomal motoneurons during fictive locomotion in the lamprey , 1993, Experimental Brain Research.

[76]  A. Büschges Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. , 2005, Journal of neurophysiology.

[77]  Joachim Schmidt,et al.  Intersegmental coordination of walking movements in stick insects. , 2005, Journal of neurophysiology.

[78]  R. Ritzmann,et al.  Effects of neck and circumoesophageal connective lesions on posture and locomotion in the cockroach , 2005, Journal of Comparative Physiology A.

[79]  V. Dürr,et al.  The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning , 2005, Journal of Experimental Biology.

[80]  A. Büschges,et al.  Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking. , 2005, Journal of neurophysiology.

[81]  A. Prochazka,et al.  Control of locomotor cycle durations. , 2005, Journal of neurophysiology.

[82]  Roger D. Quinn,et al.  Sensory Coupled Action Switching Modules Generate Robust, Adaptive Stepping in Legged Robots , 2006 .

[83]  A. Büschges,et al.  Control of stepping velocity in a single insect leg during walking , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[84]  Ansgar Büschges,et al.  Assessing sensory function in locomotor systems using neuro-mechanical simulations , 2006, Trends in Neurosciences.

[85]  Ansgar Büschges,et al.  Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. , 2006, Journal of neurophysiology.

[86]  A. Büschges,et al.  Tethered stick insect walking: A modified slippery surface setup with optomotor stimulation and electrical monitoring of tarsal contact , 2006, Journal of Neuroscience Methods.

[87]  J. Schmitz,et al.  Segment Specificity of Load Signal Processing Depends on Walking Direction in the Stick Insect Leg Muscle Control System , 2007, The Journal of Neuroscience.