Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions
暂无分享,去创建一个
[1] Wang Hai-bing,et al. High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .
[2] Chi-Wang Shu,et al. High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..
[3] J. Sethian,et al. FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .
[4] Robert Schaback,et al. Reconstruction of Multivariate Functions from Scattered Data , 2003 .
[5] Bernardo Cockburn,et al. A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case , 2001, Math. Comput..
[6] S. Osher,et al. Motion of curves in three spatial dimensions using a level set approach , 2001 .
[7] Rémi Abgrall,et al. High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..
[8] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[9] Panagiotis E. Souganidis,et al. Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.
[10] J. Strain. Tree Methods for Moving Interfaces , 1999 .
[11] Chaowei Hu,et al. No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .
[12] Thomas Sonar,et al. On Families of Pointwise Optimal Finite Volume ENO Approximations , 1998 .
[13] J. Sethian,et al. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .
[14] O. Friedrich,et al. Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .
[15] Mark A Fleming,et al. Meshless methods: An overview and recent developments , 1996 .
[16] R. Abgrall. Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .
[17] T. Sonar. Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws , 1996 .
[18] A. Iske,et al. On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions , 1996 .
[19] Zongmin Wu,et al. Compactly supported positive definite radial functions , 1995 .
[20] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[21] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[22] Rémi Abgrall,et al. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .
[23] A. Harten,et al. Multi-Dimensional ENO Schemes for General Geometries , 1991 .
[24] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[25] S. Osher,et al. High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .
[26] ShuChi-Wang,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .
[27] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[28] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[29] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[30] S. Osher,et al. Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .
[31] P. Lions,et al. Two approximations of solutions of Hamilton-Jacobi equations , 1984 .
[32] M. Crandall,et al. Monotone difference approximations for scalar conservation laws , 1979 .
[33] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .