Numerical methods for high dimensional Hamilton-Jacobi equations using radial basis functions

[1]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[2]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..

[3]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[4]  Robert Schaback,et al.  Reconstruction of Multivariate Functions from Scattered Data , 2003 .

[5]  Bernardo Cockburn,et al.  A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case , 2001, Math. Comput..

[6]  S. Osher,et al.  Motion of curves in three spatial dimensions using a level set approach , 2001 .

[7]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[8]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[9]  Panagiotis E. Souganidis,et al.  Finite volume schemes for Hamilton–Jacobi equations , 1999, Numerische Mathematik.

[10]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[11]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[12]  Thomas Sonar,et al.  On Families of Pointwise Optimal Finite Volume ENO Approximations , 1998 .

[13]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[14]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[15]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[16]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[17]  T. Sonar Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws , 1996 .

[18]  A. Iske,et al.  On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions , 1996 .

[19]  Zongmin Wu,et al.  Compactly supported positive definite radial functions , 1995 .

[20]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[21]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[22]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[23]  A. Harten,et al.  Multi-Dimensional ENO Schemes for General Geometries , 1991 .

[24]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[25]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[26]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[27]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[28]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[29]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[30]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[31]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[32]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[33]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .