Nanoscale devices for solid state refrigeration and power generation

A brief review of various techniques to engineer nanoscale thermal and electrical properties of materials is given. The main emphasis is on various energy conversion mechanisms, particularly, thermo electric refrigeration and power generation. Recent experimental and theoretical results on superlattice and quantum dot thermoelectrics and solid-state and vacuum thermionic thin film devices are reviewed. We also present an overview of the research activities at the multi university Thermionic Energy Conversion Center on the design of solid-state and vacuum devices that could convert heat into electricity with hot side temperatures ranging from 300 to 650C and with high conversion efficiency.

[1]  A. Shakouri,et al.  Material optimization for heterostructure integrated thermionic coolers , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[2]  Ali Shakouri,et al.  Electronic and thermoelectric transport in semiconductor and metallic superlattices , 2004 .

[3]  Broido Da,et al.  Effect of superlattice structure on the thermoelectric figure of merit. , 1995 .

[4]  Ali Shakouri,et al.  Experimental Characterization and Modeling of InP-based Microcoolers , 2003 .

[5]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[6]  John T. L. Thong,et al.  High-current field emission from a vertically aligned carbon nanotube field emitter array , 2001 .

[7]  Li Shi,et al.  Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy , 2001 .

[8]  Kenneth E. Goodson,et al.  Short-time-scale thermal mapping of microdevices using a scanning thermoreflectance technique , 1998 .

[9]  Kenneth E. Goodson,et al.  Measurement of ballistic phonon conduction near hotspots in silicon , 2001 .

[10]  V. Semenyuk Thermoelectric micro modules for spot cooling of high density heat sources , 2001, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).

[11]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[12]  Arun Majumdar,et al.  Interface and strain effects on the thermal conductivity of heterostructures: A molecular dynamics study , 2002 .

[13]  Ali Shakouri,et al.  Heat Transfer in Nanostructures for Solid-State Energy Conversion , 2002 .

[14]  Ali Shakouri,et al.  Design and characterization of thin film microcoolers , 2001 .

[15]  Peter Rodgers,et al.  Prediction of Microelectronics Thermal Behavior in Electronic Equipment: Status, Challenges and Future Requirements , 2004 .

[16]  Ali Shakouri,et al.  Influence of Doping Concentration and Ambient Temperature on the Cross-Plane Seebeck Coefficient of InGaAs/InAlAs superlattices , 2003 .

[17]  Robert S. Feigelson,et al.  The Next-Generation Materials for Small-Scale Refrigeration and Power-Generation Applications , 2000 .

[18]  David Michael Rowe,et al.  Recent developments in thermoelectric materials , 1986 .

[19]  H. Maris,et al.  Picosecond ultrasonics , 1989 .

[20]  Ali Shakouri,et al.  High-resolution noncontact thermal characterization of semiconductor devices , 2001, SPIE LASE.

[21]  Yonhua Tzeng,et al.  Fabrication and characterization of non-planar high-current-density carbon-nanotube coated cold cathodes , 2003 .

[22]  Ali Shakouri,et al.  Improved thermoelectric power factor in metal-based superlattices. , 2004, Physical review letters.

[23]  P. J. Taylor,et al.  Thermoelectric quantum-dot superlattices with high ZT , 2000 .

[24]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[25]  M. Stettler,et al.  A critical examination of the assumptions underlying macroscopic transport equations for silicon devices , 1993 .

[26]  Ali Shakouri,et al.  Experimental Investigation of Thin Film InGaAsP Coolers , 2000 .

[27]  M. Dresselhaus,et al.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[28]  Ali Shakouri,et al.  Through the substrate, backside thermal measurements on active semiconductor devices using near IR thermoreflectance , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..

[29]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[30]  Hicks,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[31]  Material Research Society Fall Meeting参加報告 , 1999 .

[32]  Donald C. Price,et al.  Adaptive Modeling of the Transients of Submicron Integrated Circuits , 1998 .

[33]  Christoph H. Grein,et al.  Multilayer thermoelectric refrigeration in Hg1−xCdxTe superlattices , 1999 .

[34]  Ronald Gronsky,et al.  Control and Assessment of Structure and Composition in Bismuth Telluride Nanowire Arrays , 2001 .

[35]  Gang Chen,et al.  Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures , 1997 .

[36]  G. J. Snyder,et al.  Thermoelectric microdevice fabricated by a MEMS-like electrochemical process , 2003, Nature materials.

[37]  Thomas W. Kenny,et al.  Vacuum thermionic refrigeration with a semiconductor heterojunction structure , 2002 .

[38]  Patrick E. Phelan,et al.  A Scattering-Mediated Acoustic Mismatch Model for the Prediction of Thermal Boundary Resistance , 2001 .

[39]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[40]  George N. Hatsopoulos,et al.  Measured Thermal Efficiencies of a Diode Configuration of a Thermo Electron Engine , 1958 .

[41]  Timothy S. Fisher,et al.  Analysis and simulation of anode heating due to electron field emission , 2003 .

[42]  Ali Shakouri,et al.  Heterostructure integrated thermionic coolers , 1997 .

[43]  H. Lyon Overview of Industry Interest in New Thermoelectric Materials , 1997 .

[44]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[45]  S. Cronin,et al.  Experimental proof-of-principle investigation of enhanced Z 3 DT in „ 001 ... oriented Si Õ Ge superlattices , 2000 .

[46]  Ali Shakouri,et al.  High cooling power density SiGe/Si microcoolers , 2001 .

[47]  Ali Shakouri,et al.  Monolithic integration of thin-film coolers with optoelectronic devices , 2000 .

[48]  Rainer Waser,et al.  Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices , 2003 .

[49]  G. Chen,et al.  Chapter 5 - Phonon Transport in Low-Dimensional Structures , 2001 .

[50]  M. Dresselhaus,et al.  Experimental proof-of-principle investigation of enhanced Z[sub 3D]T in (001) oriented Si/Ge superlattices , 2000 .

[51]  Robert Nemanich,et al.  Enhanced low-temperature thermionic field emission from surface-treated N-doped diamond films , 2002 .

[52]  D. G. Walker,et al.  Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes , 2002 .

[53]  A. Borshchevsky,et al.  Skutterudites for thermoelectric applications , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[54]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[55]  Konstantin K. Likharev,et al.  Possible cooling by resonant Fowler-Nordheim emission , 1999 .

[56]  J. Bowers,et al.  Thermoelectric effects in submicron heterostructure barriers , 1998 .

[57]  Stefan Dilhaire,et al.  Imaging setup for temperature, topography, and surface displacement measurements of microelectronic devices , 2003 .

[58]  Harald Böttner,et al.  Thermoelectric micro devices: current state, recent developments and future aspects for technological progress and applications , 2002 .

[59]  Broido,et al.  Effect of superlattice structure on the thermoelectric figure of merit. , 1995, Physical review. B, Condensed matter.

[60]  Leathen Shi,et al.  Enhanced thermoelectric cooling at cold junction interfaces , 2002 .

[61]  Paul R. Herz,et al.  Arrays of nanowires on silicon wafers , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[62]  Timothy P. Hogan,et al.  CsBi4Te6: A High‐Performance Thermoelectric Material for Low‐Temperature Applications. , 2000 .

[63]  R. Tsu,et al.  Inverse Nottingham Effect Cooling in Semiconductors , 1999 .

[64]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[65]  G. Dresselhaus,et al.  Advances in 1D and 2D thermoelectric materials , 1999, Eighteenth International Conference on Thermoelectrics. Proceedings, ICT'99 (Cat. No.99TH8407).

[66]  George S. Nolas,et al.  The next generation of thermoelectric materials , 1998, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365).

[67]  S. M. Sze,et al.  Scanning the issue - Special issue on nanoelectronics and nanoscale processing , 2003 .

[68]  M. S. Dresselhaus,et al.  Fabrication, Characterization and Electronic Properties of Bismuth Nanowire Systems , 1998 .

[69]  Ali Shakouri,et al.  MODELING AND OPTIMIZATION OF SINGLE-ELEMENT BULK SiGe THIN-FILM COOLERS , 2005 .

[70]  Takaaki Koga,et al.  Carrier pocket engineering to design superior thermoelectric materials using GaAs/AlAs superlattices , 1998 .

[71]  Keith E. O’Hara,et al.  Characterization of nanostructured metal films by picosecond acoustics and interferometry , 2001 .

[72]  J. Piprek,et al.  3D Electrothermal Simulation of Heterostructure Thin Film Micro-Coolers , 2003 .

[73]  Jorge O. Sofo,et al.  Thermoelectric figure of merit of superlattices , 1994 .

[74]  Gerald D. Mahan,et al.  Multilayer Thermionic Refrigeration , 1998 .

[75]  C. M. Thrush,et al.  Resistance, magnetoresistance, and thermopower of zinc nanowire composites. , 2003, Physical review letters.

[76]  Ali Shakouri,et al.  Thermionic emission cooling in single barrier heterostructures , 1999 .

[77]  Ali Shakouri,et al.  SiGeC/Si superlattice microcoolers , 2001 .

[78]  Deyu Li,et al.  Measurements of Bi/sub 2/Te/sub 3/ nanowire thermal conductivity and Seebeck coefficient , 2002, Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT '02..

[79]  Patrick E. Phelan,et al.  Current and future miniature refrigeration cooling technologies for high power microelectronics , 2001, Seventeenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No.01CH37189).

[80]  D. Fournier,et al.  Photothermal microscopy of silicon epitaxial layer on silicon substrate with depletion region at the interface , 2003 .

[81]  A. Bar-Cohen,et al.  Use of superlattice thermionic emission for "hot spot" reduction in a convectively-cooled chip , 2004, The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543).

[82]  Taofang Zeng,et al.  Phonon heat conduction in thin films : Impacts of thermal boundary resistance and internal heat generation , 2001 .

[83]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.