VMATCH: Using logical variation to counteract physical variation in bottom-up, nanoscale systems

Nanowire building blocks provide a promising path to small feature size and thus the ability to more densely pack logic. However, the small feature size and novel, bottom-up manufacturing process will exhibit extreme variation and produce many devices that operate outside acceptable operating ranges. One-mapping-fits-all, prefabrication assignment of logical functions to physical transistors that exhibit high threshold variation will not work-combining the wide range of physical variation in transistor threshold voltage with the wide range of fanouts in the design produces an unworkably large composite range of possible delays. Nonetheless, by carefully matching the fanout of each net to the physical threshold voltages of devices after fabrication, it is possible to reduce the net range of path delays sufficiently to achieve high system yield. By adding a modest amount of extra resources, we achieve 100% yield for systems built out of devices with 38% variation, the ITRS prediction for threshold variation in 5nm transistors. Moreover, for these systems, we maintain delay, energy and area close to the variation-free nominal case.

[1]  A. Asenov,et al.  Intrinsic threshold voltage fluctuations in decanano MOSFETs due to local oxide thickness variations , 2002 .

[2]  Dmitri B. Strukov,et al.  A reconfigurable architecture for hybrid CMOS/Nanodevice circuits , 2006, FPGA '06.

[3]  Jan M. Rabaey,et al.  Digital Integrated Circuits , 2003 .

[4]  T. J. Walls,et al.  Nanoscale silicon MOSFETs: A theoretical study , 2003 .

[5]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[6]  Charles M. Lieber,et al.  Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires , 2005, Science.

[7]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[8]  Carl Ebeling,et al.  PathFinder: A Negotiation-Based Performance-Driven Router for FPGAs , 1995, Third International ACM Symposium on Field-Programmable Gate Arrays.

[9]  R. Stanley Williams,et al.  CMOS-like logic in defective, nanoscale crossbars , 2004 .

[10]  Zhiyong Fan,et al.  Structures and Electrical Properties of Ag – Tetracyanoquinodimethane Organometallic Nanowires , 2005 .

[11]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[12]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[13]  André DeHon,et al.  Seven strategies for tolerating highly defective fabrication , 2005, IEEE Design & Test of Computers.

[14]  A. Asenov,et al.  Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness , 2003 .

[15]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[16]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[17]  George Varghese,et al.  HSRA: high-speed, hierarchical synchronous reconfigurable array , 1999, FPGA '99.

[18]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[19]  T. Hiramoto,et al.  Channel width and length dependence in Si nanocrystal memories with ultra-nanoscale channel , 2005, IEEE Transactions on Nanotechnology.

[20]  Dongmok Whang,et al.  Large-scale hierarchical organization of nanowire arrays for integrated nanosystems , 2003 .

[21]  Guorong Chen,et al.  Structures and electrical properties of Ag-tetracyanoquinodimethane organometallic nanowires , 2005, IEEE Transactions on Nanotechnology.

[22]  Erik H. Anderson,et al.  Nanoscale molecular-switch devices fabricated by imprint lithography , 2003 .

[23]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[24]  Jason Cong,et al.  Performance-driven mapping for CPLD architectures , 2001, FPGA '01.

[25]  Charles M Lieber,et al.  Ultrathin Au nanowires and their transport properties. , 2008, Journal of the American Chemical Society.

[26]  Silvija Gradecak,et al.  General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. , 2005, Nano letters.

[27]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[28]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[29]  André DeHon,et al.  Nanowire-based programmable architectures , 2005, JETC.

[30]  Charles M. Lieber,et al.  Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires , 2001 .

[31]  Dongmok Whang,et al.  Nanolithography Using Hierarchically Assembled Nanowire Masks , 2003 .

[32]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[33]  David Blaauw,et al.  Ultralow-voltage, minimum-energy CMOS , 2006, IBM J. Res. Dev..

[34]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[35]  A. Asenov Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 /spl mu/m MOSFET's: A 3-D "atomistic" simulation study , 1998 .

[36]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.