Structures with many-valued information and their relational proof theory

We present a uniform relational framework for developing proof systems for theories of manyvaluedness that may have the form of a logical system, of a class of algebra or of an information system. We outline a construction of proof systems for SH/sub n/ logics, mv-algebra and many-valued information systems.

[1]  Wendy MacCaull,et al.  Relational semantics and a relational proof system for full Lambek calculus , 1998, The Journal of Symbolic Logic.

[2]  H. Rasiowa,et al.  Logic at work : essays dedicated to the memory of Helena Rasiowa , 1999 .

[3]  Ewa Orlowska,et al.  A Relational Formalisation of Arbitrary Finite Valued Logics , 1998, Log. J. IGPL.

[4]  Ivo Düntsch,et al.  An Algebraic and Logical Approach to the Approximation of Regions , 2000, RelMiCS.

[5]  João Balsa,et al.  Overcoming Incomplete Information in NLP Systems - Verb Subcategorization , 1998, AIMSA.

[6]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[7]  G. Epstein The lattice theory of Post algebras , 1960 .

[8]  Ewa Orlowska,et al.  Relational semantics for arbitrary finite valued logics , 1998, RelMiCS.

[9]  Wendy MacCaull Relational Proof System for Linear and Other Substructural Logics , 1997, Log. J. IGPL.

[10]  Ivo Düntsch,et al.  A Proof System for Contact Relation Algebras , 2000, J. Philos. Log..

[11]  Ewa Orlowska Relational Formalisation of Nonclassical Logics , 1997, Relational Methods in Computer Science.

[12]  Roberto Cignoli,et al.  Proper n-valued Łukasiewicz algebras as S-algebras of Łukasiewicz n-valued prepositional calculi , 1982 .

[13]  E. Orlowska Relational interpretation of modal logics , 1988 .

[14]  Luisa Iturrioz Symmetrical Heyting Algebras with Operators , 1983, Math. Log. Q..

[15]  Marcelo F. Frias,et al.  A proof system for fork algebras and its applications to reasoning in logics based on intuitionism , 1995 .

[16]  Witold Lipski,et al.  Informational Systems with Incomplete Information , 1976, ICALP.

[17]  Wojciech Buszkowski,et al.  Indiscernibility-Based Formalization of Dependencies in Information Systems , 1998 .

[18]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[19]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[20]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[21]  Ivo Düntsch,et al.  Relational attribute systems , 2002, Int. J. Hum. Comput. Stud..

[22]  Ewa Orlowska,et al.  Relational Proof Systems for Modal Logics , 1996 .