Intelligent Target Detection in Hyperspectral Imagery

Presented at the 13th International Conference on Applied Geologic Sensing, Vancouver, B.C., Canada

[1]  John B. Adams,et al.  Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces] , 1992 .

[2]  S. Macenka,et al.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1988 .

[3]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[4]  John A. Richards,et al.  Efficient maximum likelihood classification for imaging spectrometer data sets , 1994, IEEE Trans. Geosci. Remote. Sens..

[5]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[6]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[7]  David A. Landgrebe,et al.  Hierarchical classifier design in high-dimensional numerous class cases , 1991, IEEE Trans. Geosci. Remote. Sens..

[8]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[9]  Xiaoli Yu,et al.  Automatic target detection and recognition in multiband imagery: a unified ML detection and estimation approach , 1997, IEEE Trans. Image Process..

[10]  Robert O. Green,et al.  Estimation of aerosol optical depth, pressure elevation, water vapor, and calculation of apparent surface reflectance from radiance measured by the airborne visible/infrared imaging spectrometer (AVIRIS) using a radiative transfer code , 1993, Defense, Security, and Sensing.