Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.

[1]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[2]  Etienne de Rocquigny,et al.  Modelling Under Risk and Uncertainty: An Introduction to Statistical, Phenomenological and Computational Methods , 2012 .

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Laura Painton Swiler,et al.  Efficient algorithms for mixed aleatory-epistemic uncertainty quantification with application to radiation-hardened electronics. Part I, algorithms and benchmark results. , 2009 .

[5]  Jorge E. Hurtado,et al.  Estimation of the lower and upper probabilities of failure using random sets and subset simulation , 2014 .

[6]  Bruno Sudret,et al.  Propagation of Uncertainties Modelled by Parametric P-boxes Using Sparse Polynomial Chaos Expansions , 2015 .

[7]  J. Wiart,et al.  Polynomial-Chaos-based Kriging , 2015, 1502.03939.

[8]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[9]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[10]  Guangtao Fu,et al.  Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory , 2011 .

[11]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[12]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[13]  Jing Li,et al.  Computation of Failure Probability Subject to Epistemic Uncertainty , 2012, SIAM J. Sci. Comput..

[14]  G. Matheron Random Sets and Integral Geometry , 1976 .

[15]  R. Storn,et al.  Differential Evolution , 2004 .

[16]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[17]  Peter Walley,et al.  Towards a unified theory of imprecise probability , 2000, Int. J. Approx. Reason..

[18]  M. D. Stefano,et al.  Efficient algorithm for second-order reliability analysis , 1991 .

[19]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[20]  Francesco Montomoli,et al.  SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos , 2016, J. Comput. Phys..

[21]  Didier Dubois,et al.  Unifying practical uncertainty representations. II: Clouds , 2008, Int. J. Approx. Reason..

[22]  A. Kolmogoroff Confidence Limits for an Unknown Distribution Function , 1941 .

[23]  Xiaoping Du,et al.  A Random Field Approach to Reliability Analysis With Random and Interval Variables , 2015 .

[24]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[25]  I. Molchanov Theory of Random Sets , 2005 .

[26]  Stefano Marelli,et al.  Rare Event Estimation Using Polynomial-Chaos Kriging , 2017 .

[27]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[28]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[29]  Warren B. Powell,et al.  C Xxxx Society for Industrial and Applied Mathematics Optimal Learning in Experimental Design Using the Knowledge Gradient Policy with Application to Characterizing Nanoemulsion Stability , 2022 .

[30]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[31]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[32]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[33]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[34]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[35]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[36]  Xinhua Yang,et al.  An improved self-adaptive differential evolution algorithm and its application , 2013 .

[37]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[38]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[39]  B. Sudret,et al.  Metamodel-based importance sampling for structural reliability analysis , 2011, 1105.0562.

[40]  Sondipon Adhikari,et al.  Fuzzy uncertainty propagation in composites using Gram–Schmidt polynomial chaos expansion , 2016 .

[41]  Stefano Marelli,et al.  UQLab: a framework for uncertainty quantification in MATLAB , 2014 .

[42]  Byung Man Kwak,et al.  Response surface augmented moment method for efficient reliability analysis , 2006 .

[43]  M. Balesdent,et al.  Kriging-based adaptive Importance Sampling algorithms for rare event estimation , 2013 .

[44]  W. Dong,et al.  Vertex method for computing functions of fuzzy variables , 1987 .

[45]  Jon C. Helton,et al.  Alternative representations of epistemic uncertainty , 2004, Reliab. Eng. Syst. Saf..

[46]  M. Beer,et al.  Structural reliability analysis on the basis of small samples: An interval quasi-Monte Carlo method , 2013 .

[47]  DesterckeS.,et al.  Unifying practical uncertainty representations -- I , 2008 .

[48]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[49]  Wolfgang Fellin,et al.  Reliability bounds through random sets , 2008 .

[50]  R. Cooke Elicitation of expert opinions for uncertainty and risks , 2003 .

[51]  R. Mullen,et al.  Interval Monte Carlo methods for structural reliability , 2010 .

[52]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[53]  Didier Dubois,et al.  A generalized vertex method for computing with fuzzy intervals , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[54]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[55]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[56]  Bruno Sudret,et al.  Multi-level meta-modelling in imprecise structural reliability analysis , 2016 .

[57]  J. Stolfi,et al.  An Introduction to Affine Arithmetic , 2003 .

[58]  B. Sudret,et al.  Quantile-based optimization under uncertainties using adaptive Kriging surrogate models , 2016, Structural and Multidisciplinary Optimization.

[59]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[60]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[61]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[62]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[63]  Jon C. Helton,et al.  An exploration of alternative approaches to the representation of uncertainty in model predictions , 2003, Reliab. Eng. Syst. Saf..

[64]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[65]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[66]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[67]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[68]  B. Sudret,et al.  Reliability-based design optimization using kriging surrogates and subset simulation , 2011, 1104.3667.

[69]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[70]  Fulvio Tonon Using random set theory to propagate epistemic uncertainty through a mechanical system , 2004, Reliab. Eng. Syst. Saf..

[71]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[72]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[73]  Scott Ferson,et al.  Arithmetic with uncertain numbers: rigorous and (often) best possible answers , 2004, Reliab. Eng. Syst. Saf..

[74]  Bruno Sudret,et al.  Imprecise structural reliability analysis using PC-Kriging , 2015 .

[75]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[76]  Arnold Neumaier Clouds, Fuzzy Sets, and Probability Intervals , 2004, Reliab. Comput..

[77]  George J. Klir,et al.  Uncertainty Modeling and Analysis in Engineering and the Sciences (Hardcover) , 2006 .

[78]  Robert Michael Kirby,et al.  Mixed aleatory and epistemic uncertainty quantification using fuzzy set theory , 2015, Int. J. Approx. Reason..

[79]  Anna M. Bonner,et al.  Acknowledgments , 2019, The Neurodiagnostic journal.

[80]  E. H. Jarow Clouds , 1931, Nature.