The complex hierarchical topology of EEG functional connectivity

[1]  Andrzej Rucinski,et al.  Random graphs , 2006, SODA.

[2]  Mario A. Parra,et al.  Comparison of network analysis approaches on EEG connectivity in beta during Visual Short-term Memory binding tasks , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[3]  C. Stam,et al.  Opportunities and methodological challenges in EEG and MEG resting state functional brain network research , 2015, Clinical Neurophysiology.

[4]  Edwin van Dellen,et al.  The minimum spanning tree: An unbiased method for brain network analysis , 2015, NeuroImage.

[5]  S. Boccaletti,et al.  Complex network theory and the brain , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[7]  Jonas Richiardi,et al.  Graph analysis of functional brain networks: practical issues in translational neuroscience , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  C J Stam,et al.  The trees and the forest: Characterization of complex brain networks with minimum spanning trees. , 2014, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[9]  C. Stam,et al.  Alzheimer's disease: connecting findings from graph theoretical studies of brain networks , 2013, Neurobiology of Aging.

[10]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.

[11]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[12]  C. Stam,et al.  The correlation of metrics in complex networks with applications in functional brain networks , 2011 .

[13]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[14]  D. Long Networks of the Brain , 2011 .

[15]  Thomas E. Nichols,et al.  Brain Network Analysis: Separating Cost from Topology Using Cost-Integration , 2011, PloS one.

[16]  R. Oostenveld,et al.  An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias , 2011, NeuroImage.

[17]  Olaf Sporns,et al.  Weight-conserving characterization of complex functional brain networks , 2011, NeuroImage.

[18]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[19]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[20]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[21]  E. Bullmore,et al.  Behavioral / Systems / Cognitive Functional Connectivity and Brain Networks in Schizophrenia , 2010 .

[22]  A. Cichocki,et al.  A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG , 2010, NeuroImage.

[23]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[24]  Michael G. Neubauer,et al.  Sum of squares of degrees in a graph , 2008, 0808.2234.

[25]  K. Gurney,et al.  Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence , 2008, PloS one.

[26]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[27]  E. Todeva Networks , 2007 .

[28]  L. D. Costa,et al.  Rich-club phenomenon across complex network hierarchies , 2007, physics/0701290.

[29]  O. Sporns Small-world connectivity, motif composition, and complexity of fractal neuronal connections. , 2006, Bio Systems.

[30]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  C. Stam,et al.  Small-world networks and functional connectivity in Alzheimer's disease. , 2006, Cerebral cortex.

[32]  Madalena Costa,et al.  Multiscale entropy analysis of biological signals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  N. Birbaumer,et al.  BCI2000: a general-purpose brain-computer interface (BCI) system , 2004, IEEE Transactions on Biomedical Engineering.

[34]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[35]  M. Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  S. Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[37]  M. Newman,et al.  Mixing patterns in networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  E. Ravasz,et al.  Hierarchical organization in complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Newman,et al.  Random Graphs as Models of Networks , 2002, cond-mat/0202208.

[40]  Phillip Bonacich,et al.  Eigenvector-like measures of centrality for asymmetric relations , 2001, Soc. Networks.

[41]  A. Barabasi,et al.  Mean-field theory for scale-free random networks , 1999, cond-mat/9907068.

[42]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[43]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[44]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[46]  J. Petersen Die Theorie der regulären graphs , 1891 .

[47]  A. OPPENHEIM.,et al.  The Industrial Applications of Oxygen , 1876, Nature.

[48]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[49]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[50]  R. Solé,et al.  Information Theory of Complex Networks: On Evolution and Architectural Constraints , 2004 .

[51]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[52]  A. Andrew,et al.  Emergence of Scaling in Random Networks , 1999 .

[53]  T. Snijders The degree variance: An index of graph heterogeneity , 1981 .

[54]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .