Fundamentals of Digital Image Processing

Introduction. 1. Two Dimensional Systems and Mathematical Preliminaries. 2. Image Perception. 3. Image Sampling and Quantization. 4. Image Transforms. 5. Image Representation by Stochastic Models. 6. Image Enhancement. 7. Image Filtering and Restoration. 8. Image Analysis and Computer Vision. 9. Image Reconstruction From Projections. 10. Image Data Compression.

[1]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[2]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[3]  J. Goodman Statistical Properties of Laser Speckle Patterns , 1963 .

[4]  S. Twomey,et al.  On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.

[5]  C. Helstrom Image Restoration by the Method of Least Squares , 1967 .

[6]  Gregory M. Robbins Image restoration for a class of linear spatially-variant degradations , 1970, Pattern Recognit..

[7]  C. Rino Factorization of spectra by discrete Fourier transforms , 1970 .

[8]  B. Frieden Restoring with maximum likelihood and maximum entropy. , 1972, Journal of the Optical Society of America.

[9]  M. M. Sondhi,et al.  Image restoration: The removal of spatially invariant degradations , 1972 .

[10]  N. Nahi Role of recursive estimation in statistical image enhancement , 1972 .

[11]  Jr. Edwin Randolf Cole The removal of unknown image blurs by homomorphic filtering , 1973 .

[12]  G. Bierman A Comparison of Discrete Linear Filtering Algorithms , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[13]  B. R. Hunt,et al.  The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.

[14]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[15]  Alexander A. Sawchuk,et al.  Space-variant image restoration by coordinate transformations* , 1974 .

[16]  L. Silverman,et al.  Modeling of two-dimensional covariance functions with application to image restoration , 1974 .

[17]  R. Gerchberg Super-resolution through Error Energy Reduction , 1974 .

[18]  L. Silverman,et al.  Restoration of motion degraded images , 1975 .

[19]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[20]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[21]  T S Huang,et al.  Iterative image restoration. , 1975, Applied optics.

[22]  A. Papoulis A new algorithm in spectral analysis and band-limited extrapolation. , 1975 .

[23]  N. Nahi,et al.  Decision-directed recursive image enhancement , 1975 .

[24]  M. Morf,et al.  Square-root algorithms for least-squares estimation , 1975 .

[25]  K. Knox Image retrieval from astronomical speckle patterns , 1976 .

[26]  H. Arsenault,et al.  Properties of speckle integrated with a finite aperture and logarithmically transformed , 1976 .

[27]  M. Strintzis,et al.  Comments on "Two dimensional Bayesian estimate of images" , 1976 .

[28]  M. Ekstrom,et al.  Two-dimensional spectral factorization with applications in recursive digital filtering , 1976 .

[29]  Anil K. Jain An Operator Factorization Method for Restoration of Blurred Images , 1977, IEEE Transactions on Computers.

[30]  JOHN w. WOODS,et al.  Kalman filtering in two dimensions , 1977, IEEE Trans. Inf. Theory.

[31]  Bobby R. Hunt,et al.  Bayesian Methods in Nonlinear Digital Image Restoration , 1977, IEEE Transactions on Computers.

[32]  F. Schoute,et al.  Hierarchic recursive image enhancement , 1977 .

[33]  Anil K. Jain,et al.  A Semicausal Model for Recursive Filtering of Two-Dimensional Images , 1977, IEEE Transactions on Computers.

[34]  Thomas L. Marzetta A linear prediction approach to two-dimensional spectral factorization and spectral estimation , 1978 .

[35]  A A Sawchuk,et al.  Image restoration by spline functions. , 1978, Applied optics.

[36]  E. Angel,et al.  Restoration of images degraded by spatially varying pointspread functions by a conjugate gradient method. , 1978, Applied optics.

[37]  A. Jain Fast inversion of banded Toeplitz matrices by circular decompositions , 1978 .

[38]  Bobby R. Hunt,et al.  Sectioned methods for image restoration , 1978 .

[39]  Dante C. Youla,et al.  Generalized Image Restoration by the Method of Alternating Orthogonal Projections , 1978 .

[40]  Anil K. Jain,et al.  Frame-to-frame restoration of diffusion images , 1978 .

[41]  Harry C. Andrews,et al.  A posteriori method of image restoration , 1979 .

[42]  Anil K. Jain,et al.  Applications of Stochastic Models for Image Data Compression. , 1979 .

[43]  Anil K. Jain,et al.  Digital Processing Of Images In Speckle Noise , 1980, Optics & Photonics.

[44]  Rui J. P. de Figueiredo,et al.  Adaptive nonlinear image restoration by a modified Kalman filtering approach , 1980, ICASSP.

[45]  H. Trussell The relationship between image restoration by the maximum a posteriori method and a maximum entropy method , 1980 .

[46]  Jae S. Lim Image restoration by short space spectral subtraction , 1980, ICASSP.

[47]  Jae Lim,et al.  Techniques For Speckle Noise Removal , 1980, Optics & Photonics.

[48]  Surendra Ranganath,et al.  Application of two dimensional spectral estimation in image restoration , 1981, ICASSP.

[49]  A. Jain,et al.  Extrapolation algorithms for discrete signals with application in spectral estimation , 1981 .

[50]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[51]  Thomas S. Huang,et al.  Picture Processing and Digital Filtering , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  J. Cadzow,et al.  Two-dimensional spectral estimation , 1981 .

[53]  Anil K Jain,et al.  A Class of FFT Based Algorithms for Linear Estimation. , 1981 .

[54]  B. Prasada,et al.  Image Sequence Coding , 1981 .

[55]  Anil K. Jain,et al.  Image data compression: A review , 1981, Proceedings of the IEEE.

[56]  M Tur,et al.  When is speckle noise multiplicative? , 1982, Applied optics.

[57]  M. Sezan,et al.  Image Restoration by the Method of Convex Projections: Part 2-Applications and Numerical Results , 1982, IEEE Transactions on Medical Imaging.

[58]  R. Chellappa,et al.  Digital image restoration using spatial interaction models , 1982 .

[59]  S. Dikshit A recursive Kalman window approach to image restoration , 1982 .

[60]  S. Lang,et al.  Spectral estimation for sensor arrays , 1983 .

[61]  P. Whittle,et al.  Prediction and Regulation by Linear Least‐Squares Methods , 1984 .

[62]  Surendra Ranganath,et al.  Two-dimensional linear prediction models-part I: Spectral factorization and realization , 1985, IEEE Trans. Acoust. Speech Signal Process..

[63]  K. H. Barratt Digital Coding of Waveforms , 1985 .

[64]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.

[65]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[66]  Arthur Albert,et al.  Regression and the Moore-Penrose Pseudoinverse , 2012 .

[67]  Guillermo Sapiro,et al.  Image Enhancement and Restoration , 2014, Computer Vision, A Reference Guide.

[68]  K. Siddaraju,et al.  DIGITAL IMAGE RESTORATION , 2011 .

[69]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[70]  Ñ.,et al.  A NEW ALGORITHM FOR TWO-DIMENSIONAL MAXIMUM ENTROPY POWER SPECTRUM ESTIMATION , 2022 .