Natural Deduction for First-Order Hybrid Logic

This is a companion paper to Braüner (2004b, Journal of Logic and Computation14, 329–353) where a natural deduction system for propositional hybrid logic is given. In the present paper we generalize the system to the first-order case. Our natural deduction system for first-order hybrid logic can be extended with additional inference rules corresponding to conditions on the accessibility relations and the quantifier domains expressed by so-called geometric theories. We prove soundness and completeness and we prove a normalisation theorem. Moreover, we give an axiom system first-order hybrid logic.

[1]  Peter Øhrstrøm,et al.  A. N. Prior's rediscovery of tense logic , 1993 .

[2]  Torben Braüner,et al.  Two Natural Deduction Systems for Hybrid Logic: A Comparison , 2004, J. Log. Lang. Inf..

[3]  John L. Pollock,et al.  Basic modal logic , 1967, Journal of Symbolic Logic.

[4]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[5]  Patrick Blackburn,et al.  Internalizing labelled deduction , 2000, J. Log. Comput..

[6]  Maarten Marx,et al.  Repairing the interpolation theorem in quantified modal logic , 2003, Ann. Pure Appl. Log..

[7]  Torben Braüner,et al.  Natural Deduction for Hybrid Logic , 2004, J. Log. Comput..

[8]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[9]  Nino B. Cocchiarella Review: Peter Ohrstrom, Per Hasle, A. N. Prior's Rediscovery of Tense Logic , 1995 .

[10]  Luca Viganò,et al.  Labelled Propositional Modal Logics: Theory and Practice , 1997, J. Log. Comput..

[11]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[12]  Maarten Marx,et al.  Tableaux for Quantified Hybrid Logic , 2002, TABLEAUX.

[13]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[14]  Torben Braüner,et al.  Modal Logic, Truth, and the Master Modality , 2002, J. Philos. Log..

[15]  Luca Viganò,et al.  Labelled Modal Logics: Quantifiers , 1998, J. Log. Lang. Inf..

[16]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[17]  James W. Garson,et al.  Quantification in Modal Logic , 1984 .

[18]  Torben Braüner,et al.  First-order modal logic , 2007, Handbook of Modal Logic.

[19]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[20]  J. Seligman The Logic of Correct Description , 1997 .

[21]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[22]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.