Activity-dependent competition regulated by nonlinear interspike interaction in STDP: a model for visual cortical plasticity

[1]  Shigeru Kubota,et al.  Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity , 2010, Journal of Computational Neuroscience.

[2]  Jonathan E. Rubin,et al.  Modulation of LTP/LTD balance in STDP by an activity-dependent feedback mechanism , 2009, Neural Networks.

[3]  Shigeru Kubota,et al.  A model for synaptic development regulated by NMDA receptor subunit expression , 2008, Journal of Computational Neuroscience.

[4]  Leon N. Cooper,et al.  A Biophysical Basis for the Inter-spike Interaction of Spike-timing-dependent Plasticity , 2006, Biological Cybernetics.

[5]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[6]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[7]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[8]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[9]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[10]  M. Bear,et al.  Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  X. Leinekugel,et al.  Calcium‐dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture , 1999, The European journal of neuroscience.

[12]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[13]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[14]  J. C. Anderson,et al.  Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. , 1998, Cerebral cortex.

[15]  H. Monyer,et al.  NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex , 1997, The Journal of Neuroscience.

[16]  G. Westbrook,et al.  Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. , 1996, Molecular pharmacology.

[17]  M P Stryker,et al.  Experience-Dependent Plasticity of Binocular Responses in the Primary Visual Cortex of the Mouse , 1996, The Journal of Neuroscience.

[18]  B. Sakmann,et al.  Developmental and regional expression in the rat brain and functional properties of four NMDA receptors , 1994, Neuron.

[19]  R. Malinow,et al.  The probability of transmitter release at a mammalian central synapse , 1993, Nature.

[20]  C. Shatz Impulse activity and the patterning of connections during cns development , 1990, Neuron.

[21]  W. Singer,et al.  Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity , 1979, Nature.

[22]  Jesper Tegnér,et al.  Spike-timing-dependent plasticity: common themes and divergent vistas , 2002, Biological Cybernetics.

[23]  T. Wiesel The postnatal development of the visual cortex and the influence of environment. , 1982, Bioscience reports.