Anomaly detection in homogenous populations: A sparse multiple kernel-based regularization method
暂无分享,去创建一个
Lennart Ljung | Tianshi Chen | Alessandro Chiuso | Martin S. Andersen | Gianluigi Pillonetto | L. Ljung | Tianshi Chen | G. Pillonetto | A. Chiuso
[1] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[2] John N. Tsitsiklis,et al. Parallel and distributed computation , 1989 .
[3] D. Hunter,et al. A Tutorial on MM Algorithms , 2004 .
[4] David P. Wipf,et al. A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.
[5] Giuseppe De Nicolao,et al. A new kernel-based approach for linear system identification , 2010, Autom..
[6] Alessandro Chiuso,et al. Prediction error identification of linear systems: A nonparametric Gaussian regression approach , 2011, Autom..
[7] Stephen P. Boyd,et al. Scalable Statistical Monitoring of Fleet Data , 2011, IFAC Proceedings Volumes.
[8] Lisa Turner,et al. Applications of Second Order Cone Programming , 2012 .
[9] Dimitry M. Gorinevsky,et al. Aircraft anomaly detection using performance models trained on fleet data , 2012, 2012 Conference on Intelligent Data Understanding.
[10] Henrik Ohlsson,et al. On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..
[11] Alexander Medvedev,et al. Non-parametric analysis of eye-tracking data by anomaly detection , 2013, 2013 European Control Conference (ECC).
[12] Lennart Ljung,et al. Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..
[13] Henrik Ohlsson,et al. Scalable anomaly detection in large homogeneous populations , 2013, Autom..
[14] Lennart Ljung,et al. System Identification Via Sparse Multiple Kernel-Based Regularization Using Sequential Convex Optimization Techniques , 2014, IEEE Transactions on Automatic Control.
[15] L. Ljung,et al. Constructive state space model induced kernels for regularized system identification , 2014 .
[16] A. Medvedev,et al. Stochastic anomaly detection in eye-tracking data for quantification of motor symptoms in Parkinson's disease. , 2015, Advances in experimental medicine and biology.