Review: Optimization methods for groundwater modeling and management

Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.RésuméLes méthodes d’optimisation ont été utilisées pour la modélisation des eaux souterraines ainsi que pour la planification et la gestion de ces systèmes. Le présent article passe en revue et évalue les méthodes d’optimisation variées qui ont été utilisées pour apporter une solution au problème inverse d’identification (estimation) des paramètres, de démarche expérimentale et de planification et gestion des eaux souterraines. Le problème inverse d’identification des paramètres concerne la détermination optimale des paramètres du modèle faisant appel aux observations sur le niveau de l’eau. En général, la démarche expérimentale optimale vise à atteindre des stratégies d’échantillonnage qui permette d’estimer les paramètres non connus du modèle. Un objectif classique de la planification d’une utilisation conjuguée optimale des eaux de surface et des eaux souterraines est de minimiser les coûts opérationnels de la réponse à la demande en eau. Les méthodes d’optimisation incluent des techniques de programmation mathématique, telles que la programmation linéaire, la programmation quadratique, la programmation dynamique, la programmation stochastique, la programmation non linéaire et des algorithmes de recherche globale comme les algorithmes génétiques, le recuit simulé et la recherche avec tabou. L’accent est mis sur les problèmes d’écoulement souterrain par opposition aux problèmes de transfert de contaminants. Le problème-type d’écoulement souterrain bi-dimensionnel est utilisé pour expliciter les formulations de base et les algorithmes employés pour résoudre les problèmes d’optimisation formulés.ResumenLos métodos de optimización se han utilizado en la modelación, planificación y manejo de los sistemas de agua subterránea. Este trabajo revisa y evalúa los distintos métodos de optimización que han sido usados para resolver el problema inverso de la identificación de parámetros (estimación), diseño experimental y planificación y manejo del agua subterránea. Se discuten varios criterios de selección de modelos, así como los criterios usados para la discriminación del modelo. El problema inverso de la identificación de parámetros se refiere a la determinación óptima de los parámetros del modelo usando observaciones de niveles de agua. En general, el diseño óptimo experimental busca encontrar estrategias de muestreo con el fin de estimar los parámetros desconocidos del modelo. Un objetivo típico de óptima planificación de uso conjuntivo de agua superficial y agua subterránea es minimizar los costos operativos de la demanda de agua. Los métodos de optimización incluyen técnicas de programación matemática, tales como programación lineal, programación cuadrática, programación dinámica, programación estocástica, programación no lineal, y la búsqueda global de algoritmos, tales como algoritmos genéticos, de recocidos simulados y de búsqueda tabú. Se hace hincapié sobre los problemas de flujo de las aguas subterráneas en contraposición a los problemas del transporte de contaminantes. Se utiliza un típico problema de flujo bidimensional de agua subterránea para explicar las formulaciones básicas y los algoritmos que han sido usados para resolver los problemas de optimización formulados.摘要最优化方法用于地下水模拟以及用于地下水系统的规划和管理。本文综述和评估了用于解决参数识别(估算)、试验设计和地下水挂会和管理逆问题的各种最优化方法。探讨了各种模型选择标准,以及探讨了用于模型识别标准。参数识别的逆问题采用水文观测数据关注模型参数的最优化确定。总的来说,最优化试验设计寻求找到采样策略,以估算未知的模型参数。地表水和地下水最优化联合利用规划中一个典型的目标就是在满足供水需求的情况下尽量减少运行费用。最优化方法包括数学编程技术,诸如线性编程、二次方编程、动态编程、随机编程、非线性编程及全局搜寻算法,诸如遗传算法、模拟的处理及禁忌算法。重点强调了与污染物运移问题对立的地下水流问题。利用典型的二维地下水流问题解释用于解决所阐述的最优化问题的基本构想和算法。ResumoOs métodos de otimização têm sido utilizados tanto para a modelagem de águas subterrâneas quanto para o planejamento e gerenciamento desses sistemas. Esse artigo revisa e avalia diversos métodos de otimização que têm sido utilizados para resolver o problema inverso da identificação (estimação) de parâmetros, delineamento experimental e planejamento e gerenciamento de águas subterrâneas. São discutidos vários critérios de seleção de modelos, assim como critérios usados para o descarte de modelos. O problema inverso de identificação de parâmetros consiste na determinação de parâmetros ótimos do modelo por intermédio de observações de níveis de água. O planejamento ótimo de experimentos, por sua vez, busca estratégias de amostragem necessárias para tal estimação de parâmetros desconhecidos do modelo. No planejamento integrado ótimo entre águas superficiais e subterrâneas, o objetivo típico é minimizar os custos operacionais de atendimento à demanda. Os métodos de otimização incluem técnicas de programação matemática, como programação linear, programação quadrática, programação dinâmica, programação estocástica, programação não-linear e os algoritmos de busca global, como algoritmos genéticos, recozimento simulado (simulated anneling) e busca tabu. É dada ênfase em problemas de escoamento de águas superficiais, diferentemente dos problemas de transporte de contaminantes. As formulações básicas dos métodos e seus algoritmos, que tem sido utilizados para resolver os problemas de otimização formulados, são discutidos a partir de um mesmo problema típico de escoamento bi-dimensional de águas subterrâneas.

[1]  F. Feng,et al.  Reply to "Comment on , 1977 .

[2]  B. Wagner Recent advances in simulation-optimization groundwater management modeling (95RG00394) , 1995 .

[3]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[4]  W. Yeh,et al.  Identification of parameters in unsteady open channel flows , 1972 .

[5]  James McPhee,et al.  Optimal Experimental Design for Parameter Estimation and Contaminant Plume Characterization in Groundwater Modelling , 2005 .

[6]  S. F. Mousavi,et al.  An approach to the design of experiments for discriminating among alternative conceptual models , 1992 .

[7]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[8]  Eileen Poeter,et al.  Building model analysis applications with the Joint Universal Parameter IdenTification and Evaluation of Reliability (JUPITER) API , 2008, Comput. Geosci..

[9]  J. Vrugt,et al.  Inverse Modeling of Subsurface Flow and Transport Properties: A Review with New Developments , 2008 .

[10]  Adam J. Siade,et al.  Snapshot selection for groundwater model reduction using proper orthogonal decomposition , 2010 .

[11]  Nien-Sheng Hsu,et al.  Multiobjective Water Resources Management Planning , 1984 .

[12]  Christine A. Shoemaker,et al.  Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models , 2005 .

[13]  Christine A. Shoemaker,et al.  OPTIMAL CONTROL FOR GROUNDWATER REMEDIATION BY DIFFERENTIAL DYNAMIC PROGRAMMING WITH QUASI-NEWTON APPROXIMATIONS , 1993 .

[14]  William W.-G. Yeh,et al.  Sampling Network Design for Transport Parameter Identification , 1990 .

[15]  J. Doherty,et al.  A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .

[16]  Frank T.-C. Tsai,et al.  Global‐local optimization for parameter structure identification in three‐dimensional groundwater modeling , 2003 .

[17]  William W.-G. Yeh,et al.  Aquifer parameter identification with optimum dimension in parameterization , 1981 .

[18]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[19]  William W.-G. Yeh,et al.  Parameter Identification in an Inhomogeneous Medium With the Finite-Element Method , 1976 .

[20]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[21]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Bithin Datta,et al.  Three-Dimensional Groundwater Contamination Source Identification Using Adaptive Simulated Annealing , 2013 .

[23]  David H. Marks,et al.  Containing groundwater contamination: Planning models using stochastic programming with recourse , 1994 .

[24]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[27]  D. Benson,et al.  Particle tracking and the diffusion‐reaction equation , 2013 .

[28]  George Kourakos,et al.  Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management. , 2013 .

[29]  Clifford I. Voss,et al.  Discrimination among one‐dimensional models of solute transport in porous media: Implications for sampling design , 1988 .

[30]  Tracy Nishikawa,et al.  Optimal pumping test design for the parameter identification of groundwater systems , 1989 .

[31]  Ming Ye,et al.  Comment on “Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window” by Frank T.‐C. Tsai and Xiaobao Li , 2010 .

[32]  Frank T.-C. Tsai,et al.  Characterization and identification of aquifer heterogeneity with generalized parameterization and Bayesian estimation , 2004 .

[33]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[34]  Mary C. Hill,et al.  UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the JUPITER API , 2006 .

[35]  E. Poeter,et al.  Documentation of UCODE; a computer code for universal inverse modeling , 1998 .

[36]  L. Jones,et al.  Optimal control of nonlinear groundwater hydraulics using differential dynamic programming , 1987 .

[37]  Catherine Certes,et al.  Application of the pilot point method to the identification of aquifer transmissivities , 1991 .

[38]  X. Wen,et al.  Geostatistical analysis of an experimental stratigraphy , 2005 .

[39]  Weihua Zhang,et al.  Shape Control with Karhunen-Loéve-Decomposition: Theory and Experimental Results , 2003 .

[40]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[41]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[42]  W. Yeh,et al.  Identification of Parameter Structure in Groundwater Inverse Problem , 1985 .

[43]  Bithin Datta,et al.  Optimal Management of Coastal Aquifers Using Linked Simulation Optimization Approach , 2005 .

[44]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[45]  William W.-G. Yeh,et al.  A proposed stepwise regression method for model structure identification , 1998 .

[46]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[47]  Jan J. Gerbrands,et al.  On the relationships between SVD, KLT and PCA , 1981, Pattern Recognit..

[48]  W. Yeh,et al.  Development of objective‐oriented groundwater models: 2. Robust experimental design , 2007 .

[49]  William W.-G. Yeh,et al.  MANAGEMENT MODEL FOR CONJUNCTIVE USE OF COASTAL SURFACE WATER AND GROUND WATER , 1998 .

[50]  N. Sun Inverse problems in groundwater modeling , 1994 .

[51]  W. Yeh,et al.  Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model , 2013 .

[52]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[53]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[54]  Christine A. Shoemaker,et al.  A quasi-multistart framework for global optimization of expensive functions using response surface models , 2013, J. Glob. Optim..

[55]  Rangasami L. Kashyap,et al.  Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  A. Lavenue,et al.  Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model , 1992 .

[57]  Hamid R. Nemati,et al.  Groundwater quality management under uncertainty: stochastic programming approaches and the value of information , 1992 .

[58]  David P. Ahlfeld,et al.  Optimal management of flow in groundwater systems , 2000 .

[59]  C. Shoemaker,et al.  Dynamic optimal control for groundwater remediation with flexible management periods , 1992 .

[60]  Bithin Datta,et al.  Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. , 2010 .

[61]  Tracy Nishikawa,et al.  Optimal Pump and Recharge Management Model for Nitrate Removal in the Warren Groundwater Basin, California , 2010 .

[62]  Richard C. Peralta,et al.  Groundwater Optimization Handbook: Flow, Contaminant Transport, and Conjunctive Management , 2012 .

[63]  Yunjung Hyun,et al.  Model Identification Criteria for Inverse Estimation of Hydraulic Parameters , 1998 .

[64]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[65]  F. Tsai,et al.  A Combinatorial Optimization Scheme for Parameter Structure Identification in Ground Water Modeling , 2003, Ground water.

[66]  John David Wilson,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model -- GMG Linear Equation Solver Package Documentation , 2004 .

[67]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[68]  William W.-G. Yeh,et al.  Systems Analysis in Ground-Water Planning and Management , 1992 .

[69]  R. Willis,et al.  Groundwater Systems Planning and Management , 1987 .

[70]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[71]  E. Hannan The Estimation of the Order of an ARMA Process , 1980 .

[72]  Arnold Heemink,et al.  Reduced models for linear groundwater flow models using empirical orthogonal functions , 2004 .

[73]  M. Hill A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression , 1992 .

[74]  P. Patrick Wang,et al.  Parameter structure identification using tabu search and simulated annealing , 1996 .

[75]  J. Doherty,et al.  Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques , 2009 .

[76]  Adam J. Siade,et al.  Reduced order parameter estimation using quasilinearization and quadratic programming , 2012 .

[77]  Frank T.-C. Tsai,et al.  Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window , 2008 .

[78]  Clifford I. Voss,et al.  Sampling design for groundwater solute transport: Tests of methods and analysis of Cape Cod tracer test data , 1991 .

[79]  Clifford I. Voss,et al.  Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport , 1989 .

[80]  L. L. Rogers,et al.  Optimal field-scale groundwater remediation using neural networks and the genetic algorithm. , 1995, Environmental science & technology.

[81]  W. Yeh,et al.  Parameter-independent model reduction of transient groundwater flow models: Application to inverse problems , 2014 .

[82]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[83]  Arthur Veldman,et al.  Proper orthogonal decomposition and low-dimensional models for driven cavity flows , 1998 .

[84]  A. W. Harbaugh MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process , 2005 .

[85]  E. Poeter,et al.  Inverse Models: A Necessary Next Step in Ground‐Water Modeling , 1997 .

[86]  John Doherty,et al.  Ground Water Model Calibration Using Pilot Points and Regularization , 2003, Ground water.

[87]  William W.-G. Yeh,et al.  Groundwater Management Using Model Reduction via Empirical Orthogonal Functions , 2008 .

[88]  M. Boucher,et al.  Interpretation of Interference Tests in a Well Field Using Geostatistical Techniques to Fit the Permeability Distribution in a Reservoir Model , 1984 .

[89]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[90]  M. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments , 1995 .

[91]  Domenico Baù,et al.  Stochastic management of pump-and-treat strategies using surrogate functions , 2006 .

[92]  Nien-Sheng Hsu,et al.  Optimum experimental design for parameter identification in groundwater hydrology , 1989 .

[93]  Steven Clark,et al.  General Algebraic Modeling System , 2014 .

[94]  Jay R. Lund,et al.  Modeling Conjunctive Use Operations and Farm Decisions with Two-Stage Stochastic Quadratic Programming , 2010 .

[95]  Damiano Pasetto,et al.  A reduced‐order model for groundwater flow equation with random hydraulic conductivity: Application to Monte Carlo methods , 2013 .