Detecting 3D Points of Interest Using Multiple Features and Stacked Auto-encoder

Considering the fact that points of interest on 3D shapes can be discriminated from a geometric perspective, it is reasonable to map the geometric signature of a point $p$p to a probability value encoding to what degree $p$p is a point of interest, especially for a specific class of 3D shapes. Based on the observation, we propose a three-phase algorithm for learning and predicting points of interest on 3D shapes by using multiple feature descriptors. Our algorithm requires two separate deep neural networks (stacked auto-encoders) to accomplish the task. During the first phase, we predict the membership of the given 3D shape according to a set of geometric descriptors using a deep neural network. After that, we train the other deep neural network to predict a probability distribution defined on the surface representing the possibility of a point being a point of interest. Finally, we use a manifold clustering technique to extract a set of points of interest as the output. Experimental results show superior detection performance of the proposed method over the previous state-of-the-art approaches.

[1]  Neil A. Dodgson,et al.  Cluster-Based Point Set Saliency , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[2]  Xiaowu Chen,et al.  3D Mesh Labeling via Deep Convolutional Neural Networks , 2015, ACM Trans. Graph..

[3]  Manfred Lau,et al.  Tactile mesh saliency , 2016, ACM Trans. Graph..

[4]  Theodore Lim,et al.  Generative and Discriminative Voxel Modeling with Convolutional Neural Networks , 2016, ArXiv.

[5]  Mateu Sbert,et al.  A unified information-theoretic framework for viewpoint selection and mesh saliency , 2009, TAP.

[6]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[7]  Rongrong Ji,et al.  Learning High-Level Feature by Deep Belief Networks for 3-D Model Retrieval and Recognition , 2014, IEEE Transactions on Multimedia.

[8]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Thomas A. Funkhouser,et al.  Schelling points on 3D surface meshes , 2012, ACM Trans. Graph..

[10]  Karol Myszkowski,et al.  Attention guided MPEG compression for computer animations , 2003, SCCG '03.

[11]  Jonathan Masci,et al.  Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[13]  Mark Trede,et al.  Identifying multiple outliers in heavy-tailed distributions with an application to market crashes , 2008 .

[14]  Shi-Min Hu,et al.  Global contrast based salient region detection , 2011, CVPR 2011.

[15]  Donald P. Greenberg,et al.  Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments , 2005, TOGS.

[16]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[17]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[18]  Thomas A. Funkhouser,et al.  Distinctive regions of 3D surfaces , 2007, TOGS.

[19]  Neil A. Dodgson,et al.  Quantitative analysis of saliency models , 2016, SIGGRAPH Asia Technical Briefs.

[20]  Daniel Cohen-Or,et al.  Contextual Part Analogies in 3D Objects , 2010, International Journal of Computer Vision.

[21]  Song Bai,et al.  Deep learning representation using autoencoder for 3D shape retrieval , 2014, SPAC.

[22]  Vladimir G. Kim,et al.  GWCNN: A Metric Alignment Layer for Deep Shape Analysis , 2017, Comput. Graph. Forum.

[23]  Ayellet Tal,et al.  Surface Regions of Interest for Viewpoint Selection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Benjamin Bustos,et al.  A Robust 3D Interest Points Detector Based on Harris Operator , 2010, 3DOR@Eurographics.

[25]  Ayellet Tal,et al.  Saliency Detection in Large Point Sets , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[28]  Thomas G. Dietterich Overfitting and undercomputing in machine learning , 1995, CSUR.

[29]  Karthik Ramani,et al.  Deep Learning 3D Shape Surfaces Using Geometry Images , 2016, ECCV.

[30]  Daniel Cohen-Or,et al.  Consistent mesh partitioning and skeletonisation using the shape diameter function , 2008, The Visual Computer.

[31]  Daniel Cremers,et al.  Anisotropic Diffusion Descriptors , 2016, Comput. Graph. Forum.

[32]  Luc Van Gool,et al.  Orientation invariant 3D object classification using hough transform based methods , 2010, 3DOR '10.

[33]  Amitabh Varshney,et al.  Persuading Visual Attention through Geometry , 2008, IEEE Transactions on Visualization and Computer Graphics.

[34]  Jian Sun,et al.  Geodesic Saliency Using Background Priors , 2012, ECCV.

[35]  Meng Wang,et al.  3D deep shape descriptor , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Ligang Liu,et al.  Co‐Segmentation of 3D Shapes via Subspace Clustering , 2012, Comput. Graph. Forum.

[38]  Ligang Liu,et al.  Mesh saliency via ranking unsalient patches in a descriptor space , 2015, Comput. Graph..

[39]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Daniel Cremers,et al.  Dense Non-rigid Shape Correspondence Using Random Forests , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[42]  Yu Fu,et al.  Visual saliency detection by spatially weighted dissimilarity , 2011, CVPR 2011.

[43]  Qinbao Song,et al.  Automatic Clustering via Outward Statistical Testing on Density Metrics , 2016, IEEE Transactions on Knowledge and Data Engineering.

[44]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[45]  Jonathan Masci,et al.  Learning shape correspondence with anisotropic convolutional neural networks , 2016, NIPS.

[46]  Yu Zhang,et al.  Unsupervised 3D shape segmentation and co-segmentation via deep learning , 2016, Comput. Aided Geom. Des..

[47]  Gary K. L. Tam,et al.  Registration of 3D Point Clouds and Meshes: A Survey from Rigid to Nonrigid , 2013, IEEE Transactions on Visualization and Computer Graphics.

[48]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[49]  Amitabh Varshney,et al.  Saliency-guided Enhancement for Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[50]  Ligang Liu,et al.  3D Shape Segmentation and Labeling via Extreme Learning Machine , 2014, Comput. Graph. Forum.

[51]  Fernando Pérez-Cruz,et al.  Kullback-Leibler divergence estimation of continuous distributions , 2008, 2008 IEEE International Symposium on Information Theory.

[52]  Shuai Li,et al.  Multi-scale mesh saliency based on low-rank and sparse analysis in shape feature space , 2015, Comput. Aided Geom. Des..

[53]  Afzal Godil,et al.  Evaluation of 3D interest point detection techniques via human-generated ground truth , 2012, The Visual Computer.

[54]  Yang Liu,et al.  O-CNN , 2017, ACM Trans. Graph..

[55]  Min Meng,et al.  Unsupervised co-segmentation for 3D shapes using iterative multi-label optimization , 2013, Comput. Aided Des..

[56]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[57]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[58]  Ralph R. Martin,et al.  Mesh saliency via spectral processing , 2014, ACM Trans. Graph..

[59]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[60]  Paul Suetens,et al.  meshSIFT: Local surface features for 3D face recognition under expression variations and partial data , 2013, Comput. Vis. Image Underst..

[61]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[62]  A. Ben Hamza,et al.  Deep learning with geodesic moments for 3D shape classification , 2018, Pattern Recognit. Lett..

[63]  Afzal Godil,et al.  Salient local 3D features for 3D shape retrieval , 2011, Electronic Imaging.

[64]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[65]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[66]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[67]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[68]  Yael Pritch,et al.  Saliency filters: Contrast based filtering for salient region detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Thomas Hofmann,et al.  Greedy Layer-Wise Training of Deep Networks , 2007 .

[70]  Aaron Hertzmann,et al.  Learning 3D mesh segmentation and labeling , 2010, SIGGRAPH 2010.