A Road-Matching Method for Precise Vehicle Localization Using Belief Theory and Kalman Filtering

This paper describes a novel road-matching method designed to support the real-time navigational function of cars for advanced systems applications in the area of driving assistance. This method provides an accurate estimation of position for a vehicle relative to a digital road map using Belief Theory and Kalman filtering. Firstly, an Extended Kalman Filter combines the DGPS and ABS sensor measurements to produce an approximation of the vehicle’s pose, which is then used to select the most likely segment from the database. The selection strategy merges several criteria based on distance, direction and velocity measurements using Belief Theory. A new observation is then built using the selected segment, and the approximate pose adjusted in a second Kalman filter estimation stage. The particular attention given to the modeling of the system showed that incrementing the state by the bias (also called absolute error) of the map significantly increases the performance of the method. Real experimental results show that this approach, if correctly initialized, is able to work over a substantial period without GPS.

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[3]  E. Krakiwsky,et al.  A Kalman filter for integrating dead reckoning, map matching and GPS positioning , 1988, IEEE PLANS '88.,Position Location and Navigation Symposium, Record. 'Navigation into the 21st Century'..

[4]  Jiro Tanaka,et al.  NAVIGATION SYSTEM WITH MAP-MATCHING METHOD , 1990 .

[5]  Chih-Ming Wang Location Estimation and Uncertainty Analysis for Mobile Robots , 1990, Autonomous Robot Vehicles.

[6]  C. A. Scott,et al.  Increased accuracy of motor vehicle position estimation by utilising map data: vehicle dynamics, and other information sources , 1994, Proceedings of VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference.

[7]  J-S Kim NODE BASED MAP MATCHING ALGORITHM FOR CAR NAVIGATION SYSTEM , 1996 .

[8]  P. Fabiani Représentation dynamique de l'incertain et stratégie de perception pour un système autonome en environnement évolutif , 1996 .

[9]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[10]  A. Kornhauser,et al.  An Introduction to Map Matching for Personal Navigation Assistants , 1998 .

[11]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[12]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[13]  D. Powell,et al.  Land-vehicle navigation using GPS , 1999, Proc. IEEE.

[14]  D. Bétaille Road Maintenance Vehicles Location using DGPS , Map-Matching and Dead-Reckoning : Experimental Results of a Smoothed EKF , 2000 .

[15]  Philippe Bonnifait,et al.  Data fusion of four ABS sensors and GPS for an enhanced localization of car-like vehicles , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[17]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[18]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[19]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[20]  M.E. El Najjar,et al.  A road reduction method using multi-criteria fusion , 2002, Intelligent Vehicle Symposium, 2002. IEEE.

[21]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[22]  J. Greenfeld MATCHING GPS OBSERVATIONS TO LOCATIONS ON A DIGITAL MAP , 2002 .

[23]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[24]  Ph. Bonnifait,et al.  MULTI-CRITERIA FUSION FOR THE SELECTION OF ROADS OF AN ACCURATE MAP , 2002 .