Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.

David Kenfack | Min Cao | Stephen P. Hubbell | Sean M. McMahon | William J. McShea | Helene C. Muller-Landau | Yadvinder Malhi | Matteo Detto | Richard P. Phillips | Stuart J. Davies | Bruno Hérault | Christopher J. Nytch | Robert W. Howe | T. Le Toan | Andrew J. Larson | H. S. Suresh | Robert Muscarella | Richard Condit | Jérôme Chave | Sarayudh Bunyavejchewin | María Uriarte | Warren Y. Brockelman | Kyle E. Harms | James A. Lutz | Norman A. Bourg | Shameema Esufali | Jean-Remy Makana | Renato Valencia | S. S. Saatchi | Jess K. Zimmerman | Jill Thompson | Nathalie Butt | Sean C. Thomas | J. Zimmerman | S. Hubbell | YiChing Lin | M. Uriarte | Jill Thompson | I. Gunatilleke | Y. Malhi | S. Saatchi | J. Chave | M. Detto | H. Muller‐Landau | M. Réjou‐Méchain | Á. Duque | R. Condit | N. Butt | R. Sukumar | S. McMahon | T. Marthews | W. McShea | J. Lutz | Zhanqing Hao | S. Davies | Zuoqiang Yuan | R. Howe | Richard P Phillips | C. Ewango | T. Hart | J. Makana | A. Larson | Daniel J. Johnson | W. Brockelman | A. Nathalang | D. Kenfack | C. Zartman | A. Oliveira | C. Nytch | R. McEwan | B. Hérault | R. Valencia | Robert Muscarella | M. Cao | Duncan W. Thomas | S. Bunyavejchewin | H. Dattaraja | K. Harms | A. Wolf | C. Fletcher | A. Vicentini | G. Chuyong | K. Clay | Shameema Esufali | H. Suresh | Dairon Cárdenas | S. Yap | N. S. M. Noor | Terese B. Hart | G. Chuyong | Raman Sukumar | H. S. Dattaraja | Dairon Cárdenas | Maxime Réjou-Méchain | Nur Supardi Md. Noor | Keith Clay | Alexandre A. de Oliveira | T. Toan | J. Barreto-Silva | Jyh-Min Chiang | R. Fernando | L. Lin | N. Pongpattananurak | Ruwan Punchi-Manage | R. Salim | J. Schurman | Udomlux Suwanvecho | Christine Fletcher | Zhanqing Hao | Yiching Lin | Jyh-Min Chiang | Alvaro Duque | Ruwan Punchi-Manage | Amy Wolf | Sandra L. Yap | Zuoqiang Yuan | Toby R. Marthews | Nantachai Pongpattananurak | Anuttara Nathalang | Alberto Vicentini | J. Barreto-Silva | Corneille E.N. Ewango | R. H. S. Fernando | I. A. U. N. Gunatilleke | L. Lin | Ryan W. McEwan | R. Salim | Jonathan S. Schurman | Udomlux Suwanvecho | Charles E. Zartman | Dairón Cárdenas | S. Thomas | Zhanqing Hao | Anuttara Nathalang | Amy Wolf

[1]  S. Goetz,et al.  Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change , 2011 .

[2]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[3]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[4]  S. Goetz,et al.  Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps , 2013, Carbon Balance and Management.

[5]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[6]  R. Fernandes,et al.  Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors , 2005 .

[7]  C. Woodcock,et al.  Scaling Field Data to Calibrate and Validate Moderate Spatial Resolution Remote Sensing Models , 2007 .

[8]  Bruno Hérault,et al.  Effects of Plot Size and Census Interval on Descriptors of Forest Structure and Dynamics , 2010 .

[9]  I. Woodhouse,et al.  Quantifying small‐scale deforestation and forest degradation in African woodlands using radar imagery , 2012 .

[10]  F. Bongers,et al.  Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana , 1996 .

[11]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[12]  N. Higuchi,et al.  Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography , 2006 .

[13]  Thuy Le Toan,et al.  Relating P-Band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain: $\gamma^0$ or $t^0$? , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[14]  S. Thompson,et al.  Correcting for regression dilution bias: comparison of methods for a single predictor variable , 2000 .

[15]  D. Roberts,et al.  The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape , 2013, Proceedings of the National Academy of Sciences.

[16]  Matteo Detto,et al.  Fitting Ecological Process Models to Spatial Patterns Using Scalewise Variances and Moment Equations , 2013, The American Naturalist.

[17]  J. Terborgh,et al.  The regional variation of aboveground live biomass in old‐growth Amazonian forests , 2006 .

[18]  Ronald E. McRoberts,et al.  The enhanced forest inventory and analysis program , 2005 .

[19]  S. McNeill,et al.  Propagating Uncertainty in Plot-based Estimates of Forest Carbon Stock and Carbon Stock Change , 2014, Ecosystems.

[20]  W. Edwards Deming,et al.  Statistical Adjustment of Data , 1944 .

[21]  M. Lefsky,et al.  Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California , 2010 .

[22]  H. Albers,et al.  Reducing emissions from deforestation and forest degradation , 2013 .

[23]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[24]  D. Ruppert,et al.  The Use and Misuse of Orthogonal Regression in Linear Errors-in-Variables Models , 1996 .

[25]  Sassan Saatchi,et al.  A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique , 2013 .

[26]  Johan Swärd,et al.  Designing a new national forest survey for Sweden , 1987 .

[27]  A. Baccini,et al.  Improving pantropical forest carbon maps with airborne LiDAR sampling , 2013 .

[28]  Jill Thompson,et al.  Rapid Simultaneous Estimation of Aboveground Biomass and Tree Diversity Across Neotropical Forests: A Comparison of Field Inventory Methods , 2013 .

[29]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[30]  R. Condit Research in large, long-term tropical forest plots. , 1995, Trends in ecology & evolution.

[31]  Lilian Blanc,et al.  Error propagation in biomass estimation in tropical forests , 2013 .

[32]  J. Terborgh,et al.  Drought Sensitivity of the Amazon Rainforest , 2009, Science.

[33]  Chuankuan Wang,et al.  Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests , 2006 .

[34]  Richard Condit,et al.  Error propagation and scaling for tropical forest biomass estimates. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[36]  Helene C. Muller-Landau,et al.  Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest , 2013 .

[37]  Hsiang-Hua Wang,et al.  Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan , 2011 .

[38]  D. Coomes,et al.  Estimating the wood density of species for carbon stock assessments , 2011 .

[39]  S. Hubbell,et al.  Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama , 2003 .

[40]  Donald P. Percival,et al.  On estimation of the wavelet variance , 1995 .

[41]  Roberta E. Martin,et al.  High-fidelity national carbon mapping for resource management and REDD+ , 2013, Carbon Balance and Management.

[42]  Richard Condit,et al.  Tropical Forest Census Plots , 1998, Environmental Intelligence Unit.

[43]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[44]  H. Muller‐Landau,et al.  Dissecting biomass dynamics in a large Amazonian forest plot , 2009, Journal of Tropical Ecology.

[45]  Gregory P. Asner,et al.  Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation , 2013, PloS one.

[46]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[47]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[48]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[49]  G. Asner,et al.  Evaluating uncertainty in mapping forest carbon with airborne LiDAR , 2011 .

[50]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[51]  Sean C. Thomas,et al.  Carbon Content of Tree Tissues: A Synthesis , 2012 .

[52]  Bicheron Patrice,et al.  GlobCover - Products Description and Validation Report , 2008 .

[53]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[54]  S. Hubbell,et al.  Liana Abundance, Diversity, and Distribution on Barro Colorado Island, Panama , 2012, PloS one.

[55]  S. Lewis,et al.  Changing Ecology of Tropical Forests: Evidence and Drivers , 2009 .

[56]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[57]  Yadvinder Malhi,et al.  Comprehensive description of the carbon cycle of an ancient temperate broadleaved woodland , 2010 .

[58]  W. Salas,et al.  Baseline Map of Carbon Emissions from Deforestation in Tropical Regions , 2012, Science.

[59]  E. Leigh,et al.  Tropical forest diversity and dynamism : findings from a large-scale plot network , 2004 .

[60]  Richard J. Smith Use and misuse of the reduced major axis for line-fitting. , 2009, American journal of physical anthropology.

[61]  Richard Condit,et al.  Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots , 1998 .

[62]  Richard Condit,et al.  Assessing Evidence for a Pervasive Alteration in Tropical Tree Communities , 2008, PLoS biology.

[63]  Sean C. Thomas,et al.  Increasing carbon storage in intact African tropical forests , 2009, Nature.

[64]  Andrew J. Larson,et al.  Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest , 2012, PloS one.

[65]  V. Kapos,et al.  Reducing Greenhouse Gas Emissions from Deforestation and Forest Degradation: Global Land-Use Implications , 2008, Science.

[66]  M. Keller,et al.  Biomass estimation in the Tapajos National Forest, Brazil: Examination of sampling and allometric uncertainties , 2001 .

[67]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[68]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[69]  Thuy Le Toan,et al.  Biomass assessment in the Cameroon savanna using ALOS PALSAR data , 2014 .

[70]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[71]  J. Lutz,et al.  The Importance of Large-Diameter Trees to Forest Structural Heterogeneity , 2013, PloS one.

[72]  Brian H. McArdle,et al.  Lines, models, and errors: Regression in the field , 2003 .

[73]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[74]  M. P.R.,et al.  A METHOD FOR SCALING VEGETATION DYNAMICS: THE ECOSYSTEM DEMOGRAPHY MODEL (ED) , 2022 .

[75]  S. Hubbell,et al.  Detecting and projecting changes in forest biomass from plot data , 2014 .

[76]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.