Solar Radiation Interpolation

Geographic information systems provide different options to analyze and represent the spatial heterogeneity of solar radiation incident on a certain area. This chapter presents a description of the main and well-known methods for determining interpolation surfaces from a data sample. Moreover, using 3D model of the analyzed area, computer models of spatial analysis are precise techniques to adjust the results to the variability of surfaces in a geographic area. Both alternatives offer a great analysis capacity. The selection of a procedure will depend on the objective of the study and the available information.

[1]  Raúl Righini,et al.  Approach to drawing new global solar irradiation contour maps for Argentina , 2005 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[4]  W. Beckman,et al.  Solar Engineering of Thermal Processes: Duffie/Solar Engineering 4e , 2013 .

[5]  Halit Apaydin,et al.  Spatial interpolation techniques for climate data in the GAP region in Turkey , 2004 .

[6]  P. Cooper The absorption of radiation in solar stills , 1969 .

[7]  J. Orgill,et al.  Correlation equation for hourly diffuse radiation on a horizontal surface , 1976 .

[8]  T. Santos,et al.  Photovoltaic potential in a Lisbon suburb using LiDAR data , 2012 .

[9]  Ramakrishna R. Nemani,et al.  A flexible, integrated system for generating meteorological surfaces derived from point sources across multiple geographic scales , 2005, Environ. Model. Softw..

[10]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[11]  Jaroslav Hofierka,et al.  A New GIS‐based Solar Radiation Model and Its Application to Photovoltaic Assessments , 2004, Trans. GIS.

[12]  N. Coops,et al.  Tree structure influences on rooftop-received solar radiation , 2011 .

[13]  J. Strobl,et al.  Spatial Modelling of Solar Energy Potential in Kenya , 2015 .

[14]  K. K. Gopinathan,et al.  Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range , 1995 .

[15]  Jian Liu,et al.  GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province , 2013 .

[16]  Fatih Evrendilek,et al.  Assessing solar radiation models using multiple variables over Turkey , 2008 .

[17]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[18]  Bradley S. Neish,et al.  Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems , 2013 .

[19]  Vítězslav Moudrý,et al.  Influence of vegetation canopies on solar potential in urban environments , 2016 .

[20]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[21]  S. Klein Calculation of monthly average insolation on tilted surfaces , 1976 .

[22]  S. Vicente‐Serrano,et al.  Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature , 2003 .

[23]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[24]  J. Carmeliet,et al.  Evaluation of photovoltaic integration potential in a village , 2015 .

[25]  Lin Lu,et al.  Estimation of Hong Kong's solar energy potential using GIS and remote sensing technologies , 2016 .

[26]  H. Mitásová,et al.  Interpolation by regularized spline with tension: I. Theory and implementation , 1993 .

[27]  R. Urraca,et al.  Solar irradiation mapping with exogenous data from support vector regression machines estimations , 2015 .

[28]  Alberto-Jesús Perea-Moreno,et al.  Solar Resource for Urban Communities in the Baja California Peninsula, Mexico , 2016 .

[29]  P. Burrough,et al.  Principles of geographical information systems , 1998 .