Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance.

[1]  K. Obama,et al.  Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion , 2021, Nature Communications.

[2]  E. Elinav,et al.  Microbiome and cancer. , 2021, Cancer cell.

[3]  J. Xia,et al.  MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights , 2021, Nucleic Acids Res..

[4]  Nupur K. Das,et al.  HIF-2α activation potentiates oxidative cell death in colorectal cancers by increasing cellular iron. , 2021, The Journal of clinical investigation.

[5]  Seung-Hwan Lee,et al.  Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment , 2021, Frontiers in Immunology.

[6]  F. Taieb,et al.  A Toxic Friend: Genotoxic and Mutagenic Activity of the Probiotic Strain Escherichia coli Nissle 1917 , 2021, bioRxiv.

[7]  Devin K. Schweppe,et al.  Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries , 2021, Nature Biotechnology.

[8]  J. Walter,et al.  A Phylogenetic View on the Role of Glycerol for Growth Enhancement and Reuterin Formation in Limosilactobacillus reuteri , 2020, Frontiers in Microbiology.

[9]  T. Moss,et al.  The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability , 2020, NAR cancer.

[10]  S. Wedge,et al.  Therapeutic Strategies Toward Lactate Dehydrogenase Within the Tumor Microenvironment of Pancreatic Cancer. , 2020, Pancreas.

[11]  Philippe P Roux,et al.  RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit , 2020, bioRxiv.

[12]  A. Chinnaiyan,et al.  Cancer SLC43A2 alters T cell methionine metabolism and histone methylation , 2020, Nature.

[13]  M. Jarek,et al.  Crypt residing bacteria and proximal colonic carcinogenesis in a mouse model of Lynch syndrome , 2020, International journal of cancer.

[14]  I. Harris,et al.  The Complex Interplay between Antioxidants and ROS in Cancer. , 2020, Trends in cell biology.

[15]  A. Need,et al.  Mutational signature in colorectal cancer caused by genotoxic pks+E. coli , 2020, Nature.

[16]  C. Lacroix,et al.  Reuterin Demonstrates Potent Antimicrobial Activity Against a Broad Panel of Human and Poultry Meat Campylobacter spp. Isolates , 2020, Microorganisms.

[17]  Jun Sun,et al.  Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. , 2020, Gastroenterology.

[18]  D. Graham,et al.  Twice‐a‐day PPI, tetracycline, metronidazole quadruple therapy with Pylera® or Lactobacillus reuteri for treatment naïve or for retreatment of Helicobacter pylori. Two randomized pilot studies , 2019, Helicobacter.

[19]  Nupur K. Das,et al.  Microbial Metabolite Signaling Is Required for Systemic Iron Homeostasis. , 2019, Cell metabolism.

[20]  M. Clapper,et al.  Gut Microbiota Influences Experimental Outcomes in Mouse Models of Colorectal Cancer , 2019, Genes.

[21]  Y. Jeong,et al.  Synergistic effect of buthionine sulfoximine on the chlorin e6-based photodynamic treatment of cancer cells , 2019, Archives of Pharmacal Research.

[22]  Tomoyoshi Soga,et al.  Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer , 2019, Nature Medicine.

[23]  Xu Ren,et al.  Negative binomial additive model for RNA-Seq data analysis , 2019, bioRxiv.

[24]  J. Colacino,et al.  Neutrophils Restrict Tumor-Associated Microbiota to Reduce Growth and Invasion of Colon Tumors in Mice. , 2019, Gastroenterology.

[25]  Paul Theodor Pyl,et al.  Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer , 2019, Nature Medicine.

[26]  Julia L. Drewes,et al.  Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic , 2019, The Journal of clinical investigation.

[27]  Nupur K. Das,et al.  Intestinal non-canonical NFκB signaling shapes the local and systemic immune response , 2019, Nature Communications.

[28]  G. Khan,et al.  Colorectal Cancer and Nutrition , 2019, Nutrients.

[29]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[30]  K. Karbstein,et al.  Ribosome biogenesis factor Ltv1 chaperones the assembly of the small subunit head , 2018, The Journal of cell biology.

[31]  J. Lapek,et al.  Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer , 2018, Cell.

[32]  Robert E. W. Hancock,et al.  MetaBridge: enabling network-based integrative analysis via direct protein interactors of metabolites , 2018, Bioinform..

[33]  L. Diaz,et al.  KEYNOTE-164: Pembrolizumab for patients with advanced microsatellite instability high (MSI-H) colorectal cancer. , 2018 .

[34]  H. Tilg,et al.  The Intestinal Microbiota in Colorectal Cancer. , 2018, Cancer cell.

[35]  B. Stockwell,et al.  Determination of the Subcellular Localization and Mechanism of Action of Ferrostatins in Suppressing Ferroptosis. , 2018, ACS chemical biology.

[36]  Drew M. Pardoll,et al.  Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria , 2018, Science.

[37]  M. Sawyer,et al.  Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. , 2018, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  M. Cabana,et al.  Lactobacillus reuteri to Treat Infant Colic: A Meta-analysis , 2018, Pediatrics.

[39]  R. Banerjee,et al.  Chemical Biology of H2S Signaling through Persulfidation. , 2017, Chemical reviews.

[40]  Defa Li,et al.  Butyrate: A Double-Edged Sword for Health? , 2018, Advances in nutrition.

[41]  A. Kimmelman,et al.  Metabolic Interactions in the Tumor Microenvironment. , 2017, Trends in cell biology.

[42]  Wei Li,et al.  YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer , 2017, Nature Communications.

[43]  F. Shanahan,et al.  The oral microbiota in colorectal cancer is distinctive and predictive , 2017, Gut.

[44]  J. Gordon,et al.  Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells , 2017, Science.

[45]  Kepeng Wang,et al.  Microbiome, inflammation and colorectal cancer. , 2017, Seminars in immunology.

[46]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[47]  J. M. Landete,et al.  Optimization of reuterin production in cheese by Lactobacillus reuteri , 2017, Journal of Food Science and Technology.

[48]  C. Capristo,et al.  Lactobacillus reuteri DSM 17938 plus vitamin D3 as ancillary treatment in allergic children with asthma. , 2016, Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology.

[49]  Olivia I. Koues,et al.  The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites , 2016, Cell.

[50]  B. Győrffy,et al.  Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis. , 2016, Cell metabolism.

[51]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[52]  Ahmedin Jemal,et al.  Global patterns and trends in colorectal cancer incidence and mortality , 2016, Gut.

[53]  T. Weir,et al.  Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. , 2015, Cell host & microbe.

[54]  Tong Un Chae,et al.  Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine , 2013, Scientific Reports.

[55]  Kyongbum Lee,et al.  Prediction and quantification of bioactive microbiota metabolites in the mouse gut , 2014, Nature Communications.

[56]  A. Walch,et al.  Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice , 2014, Nature Cell Biology.

[57]  B. Wilson,et al.  Gut Microbial Metabolism Drives Transformation of Msh2-Deficient Colon Epithelial Cells , 2014, Cell.

[58]  Wei Shi,et al.  featureCounts: an efficient general purpose program for assigning sequence reads to genomic features , 2013, Bioinform..

[59]  G. Núñez,et al.  Gut microbiota protects against gastrointestinal tumorigenesis caused by epithelial injury. , 2013, Cancer research.

[60]  S. Rivella,et al.  Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia , 2013, Proceedings of the National Academy of Sciences.

[61]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[62]  L. Stronati,et al.  Randomised clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis , 2012, Alimentary pharmacology & therapeutics.

[63]  B. Borhan,et al.  The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. , 2010, Microbiology.

[64]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[65]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[66]  J. Rabinowitz,et al.  Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach , 2008, Nature Protocols.

[67]  Kathleen R. Cho,et al.  Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. , 2007, Cancer research.

[68]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[69]  W. Dobrogosz,et al.  Chemical characterization of an antimicrobial substance produced by Lactobacillus reuteri , 1989, Antimicrobial Agents and Chemotherapy.