Classification et évolution des tissus urbains à partir de données vectorielles

Morphological analysis of urban fabric is a relevant step in order to perform the analysis of urban dynamics and to simulate their evolutions. In this context, the objective of this paper is to test to test two relational data mining methods (Cardinalisation and Quantiles) to label urban blocks and to produce rules on their morphology. The objective is to automate the identification of urban fabrics from vector and historical database and to extract knowledge on urban morphology. Several tests applied on the Strasbourg area on historical database, are encouraging (80% of global accuracy on historical database). From the classification results, a statistical analysis of evolutions is described. MOTS-CLES : tissu urbain, morphologie, bases de donnees vectorielles, classification, arbre de decision, evolution.

[1]  D. Boyd,et al.  Updating topographic mapping in Great Britain using imagery from high-resolution satellite sensors , 2006 .

[2]  Ansaf Salleb-Aouissi,et al.  An Application of Association Rules Discovery to Geographic Information Systems , 2000, PKDD.

[3]  Nicolas Lachiche,et al.  Propositionaliser des attributs numériques sans les discrétiser, ni les agréger , 2011, EGC.

[4]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[5]  Nicolas Passat,et al.  Multi-resolution region-based clustering for urban analysis , 2010 .

[6]  P. Longley,et al.  Remote Sensing and Urban Analysis , 2001 .

[7]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[8]  Vincent Lemaire,et al.  État de l'art sur les méthodes statistiques d'apprentissage actif , 2006, AAFD.

[9]  Nicolas Lachiche,et al.  A Platform for Spatial Data Labeling in an Urban Context , 2009, OGRS.

[10]  Bernard Henri Nicot Une mesure de l'étalement urbain en France, 1982-90 , 1996 .

[11]  A. Jacquin,et al.  A hybrid object-based classification approach for mapping urban sprawl in periurban environment , 2008 .

[12]  Nadjim Chelghoum,et al.  Fouille de données spatiales par arbre de décision multi-thème , 2002, EGC.

[13]  Emmanuel P. Baltsavias,et al.  Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems☆ , 2004 .

[14]  Dong-Chen He,et al.  Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge , 2010 .