Density waves and jamming transition in cellular automaton models for traffic flow

In this paper computer simulation results of higher-order density correlations for cellular automaton models of traffic flow are presented. The examinations show the jamming transition as a function of both the density and the magnitude of noise and allow one to calculate the velocity of upstream moving jams. This velocity is independent of the density and decreases with growing noise. The point of maximum flow in the fundamental diagram determines its value. For that it is not necessary to explicitly define jams in the language of the selected model, but only based upon the well defined characteristic density profiles along the line.

[1]  A. Schadschneider,et al.  Cellular automation models and traffic flow , 1993, cond-mat/9306017.

[2]  S. Lubeck,et al.  Critical behavior of a traffic flow model , 1999 .

[3]  M. Schreckenberg,et al.  Density fluctuations and phase transition in the Nagel-Schreckenberg traffic flow model , 1998 .

[4]  Mahler,et al.  Optically driven quantum networks: Applications in molecular electronics. , 1993, Physical review. B, Condensed matter.

[5]  János Kertész,et al.  Correlation functions in the Nagel-Schreckenberg model , 1998 .

[6]  Kerner,et al.  Experimental features and characteristics of traffic jams. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  P. Wagner,et al.  Metastable states in a microscopic model of traffic flow , 1997 .

[8]  M. Lighthill,et al.  On kinematic waves I. Flood movement in long rivers , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[9]  H. Takayasu,et al.  1/f NOISE IN A TRAFFIC MODEL , 1993 .

[10]  Michael Schreckenberg,et al.  Workshop on Traffic and Granular Flow '97 : Gerhard-Mercato-Universität Duisburg, Germany, 6-8 October 1997 , 1998 .

[11]  M. Schreckenberg,et al.  Microscopic Simulation of Urban Traffic Based on Cellular Automata , 1997 .

[12]  A. Schadschneider,et al.  Traffic flow models with ‘slow‐to‐start’ rules , 1997, cond-mat/9709131.

[13]  Gábor Csányi,et al.  Scaling behaviour in discrete traffic models , 1995 .

[14]  A. Schadschneider,et al.  Jamming transition in a cellular automaton model for traffic flow , 1998 .

[15]  Michael Schreckenberg,et al.  Garden of Eden states in traffic models , 1998 .

[16]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[17]  B. Chopard,et al.  Cellular automata model of car traffic in a two-dimensional street network , 1996 .

[18]  D. Helbing Fundamentals of traffic flow , 1997, cond-mat/9806080.

[19]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  K. Nagel LIFE TIMES OF SIMULATED TRAFFIC JAMS , 1993, cond-mat/9310018.

[22]  A. Schadschneider,et al.  Metastable states in cellular automata for traffic flow , 1998, cond-mat/9804170.

[23]  Peter Wagner,et al.  Parallel real-time implementation of large-scale, route-plan-driven traffic simulation , 1996 .

[24]  Nakayama,et al.  Dynamical model of traffic congestion and numerical simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Marton Sasvari,et al.  Cellular automata models of single-lane traffic , 1997 .