Monitoring and switching of cortico-basal ganglia loop functions by the thalamo-striatal system

[1]  Neuroscience Research , 2006, Neuroscience Research.

[2]  Naomi Hasegawa,et al.  Thalamocortical and intracortical connections of monkey cingulate motor areas , 2003, The Journal of comparative neurology.

[3]  Wolfram Schultz,et al.  Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. , 2003, Journal of neurophysiology.

[4]  T. Tsumori,et al.  Nigrothalamostriatal and nigrothalamocortical pathways via the ventrolateral parafascicular nucleus , 2003, Neuroreport.

[5]  Y. Smith,et al.  Nigral and pallidal inputs to functionally segregated thalamostriatal neurons in the centromedian/parafascicular intralaminar nuclear complex in monkey , 2002, The Journal of comparative neurology.

[6]  M. Kimura,et al.  Participation of the thalamic CM-Pf complex in attentional orienting. , 2002, Journal of neurophysiology.

[7]  P. Salin,et al.  Effects of intralaminar thalamic nuclei lesion on glutamic acid decarboxylase (GAD65 and GAD67) and cytochrome oxidase subunit I mRNA expression in the basal ganglia of the rat , 2002, The European journal of neuroscience.

[8]  W. Schultz,et al.  Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. , 2001, Journal of neurophysiology.

[9]  P Redgrave,et al.  Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat , 2001, The Journal of comparative neurology.

[10]  A. Graybiel,et al.  Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. , 2001, Journal of neurophysiology.

[11]  Kerry McAlonan,et al.  Thalamic Reticular Nucleus Activation Reflects Attentional Gating during Classical Conditioning , 2000, The Journal of Neuroscience.

[12]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[13]  A. Nobre,et al.  Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts , 2000, Neuropsychologia.

[14]  E. C. Hirsch,et al.  Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson's disease , 2000, Neuroscience.

[15]  V J Brown,et al.  Attentional Orienting Is Impaired by Unilateral Lesions of the Thalamic Reticular Nucleus in the Rat , 1999, The Journal of Neuroscience.

[16]  Y. Smith,et al.  Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins , 1999, Neuroscience.

[17]  N. Ichinohe,et al.  A di-synaptic projection from the superior colliculus to the head of the caudate nucleus via the centromedian-parafascicular complex in the cat: an anterograde and retrograde labeling study , 1998, Neurosciences research.

[18]  O. Hikosaka,et al.  Expectation of reward modulates cognitive signals in the basal ganglia , 1998, Nature Neuroscience.

[19]  J. Hollerman,et al.  Influence of reward expectation on behavior-related neuronal activity in primate striatum. , 1998, Journal of neurophysiology.

[20]  A. Graybiel The Basal Ganglia and Chunking of Action Repertoires , 1998, Neurobiology of Learning and Memory.

[21]  E. Mengual,et al.  Overlapping territories between the thalamostriatal and nigrothalamic projections in cats , 1998, Neuroreport.

[22]  D. Boussaoud,et al.  The Primate Striatum: Neuronal Activity in Relation to Spatial Attention Versus Motor Preparation , 1997, The European journal of neuroscience.

[23]  Y. Smith,et al.  Efferent connections of the internal globus pallidus in the squirrel monkey: I. topography and synaptic organization of the pallidothalamic projection , 1997, The Journal of comparative neurology.

[24]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[25]  B. Gulyás,et al.  Activation by Attention of the Human Reticular Formation and Thalamic Intralaminar Nuclei , 1996, Science.

[26]  M. Mancia,et al.  Orienting-like reaction after ibotenic acid injections into the thalamic centre median nucleus in the cat. , 1995, Archives italiennes de biologie.

[27]  M. Kimura Role of basal ganglia in behavioral learning , 1995, Neuroscience Research.

[28]  H. Groenewegen,et al.  The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei , 1994, Trends in Neurosciences.

[29]  D. Contreras,et al.  Synchronized sleep oscillations and their paroxysmal developments , 1994, Trends in Neurosciences.

[30]  A. Davies,et al.  Intrinsic programmes of growth and survival in developing vertebrate neurons , 1994, Trends in Neurosciences.

[31]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[32]  A. Parent,et al.  Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey , 1994, The Journal of comparative neurology.

[33]  A. Graybiel,et al.  Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  D. Robinson,et al.  Covert orienting of attention in macaques. I. Effects of behavioral context. , 1993, Journal of neurophysiology.

[35]  J. Bolam,et al.  Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat , 1992, Neuroscience.

[36]  G. Krauthamer,et al.  Effect of superior colliculus lesions on sensory unit responses in the intralaminar thalamus of the rat , 1992, Brain Research.

[37]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections , 1992, The Journal of comparative neurology.

[38]  J. Yelnik,et al.  Topographic distribution of the neurons of the central complex (centre médian-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaques , 1991, Neuroscience.

[39]  G. J. Royce,et al.  Subcortical projections to the centromedian and parafascicular thalamic nuclei in the cat , 1991, The Journal of comparative neurology.

[40]  A. Parent,et al.  Topography of the projection from the central complex of the thalamus to the sensorimotor striatal territory in monkeys , 1991, The Journal of comparative neurology.

[41]  Shiro Nakagawa,et al.  Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata , 1990, Brain Research.

[42]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[43]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[44]  M. Descheˆnes,et al.  The effects of brainstem peribrachial stimulation on perigeniculate neurons: The blockage of spindle waves , 1989, Neuroscience.

[45]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[46]  A. Parent,et al.  Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys , 1988, The Journal of comparative neurology.

[47]  R. Vertes,et al.  Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat , 1988, The Journal of comparative neurology.

[48]  A. Parent,et al.  Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei , 1988, Neuroscience.

[49]  J. Rajkowski,et al.  Tonically discharging putamen neurons exhibit set-dependent responses. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Schlag-Rey,et al.  Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. , 1984, Journal of neurophysiology.

[51]  André Parent,et al.  The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method , 1983, Brain Research.

[52]  K. Heilman,et al.  Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. , 1981, Archives of neurology.

[53]  Michael I. Posner,et al.  Please Scroll down for Article the Quarterly Journal of Experimental Psychology Orienting of Attention Orienting of Attention* , 2022 .

[54]  K. Heilman,et al.  Thalamic neglect , 1979, Neurology.

[55]  M. Carpenter,et al.  Organization of pallidothalamic projections in the rhesus monkey , 1973, The Journal of comparative neurology.

[56]  M. Schlag-Rey,et al.  Unilateral visual neglect and thalamic intralaminar lesions in the cat. , 1973, Experimental neurology.

[57]  M. E. Anderson,et al.  An autoradiographic study of efferent connections of the globus pallidus in Macaca mulatta , 2004, Experimental Brain Research.

[58]  L. G. Isaacson,et al.  Cholinergic and non-cholinergic projections from the canine pontomesencephalic tegmentum (Ch5 area) to the caudal intralaminar thalamic nuclei , 2004, Experimental Brain Research.

[59]  G. Krauthamer,et al.  Sensory responses of intralaminar thalamic neurons activated by the superior colliculus , 2004, Experimental Brain Research.

[60]  Tomoki Fukai,et al.  A Simple Neural Network Exhibiting Selective Activation of Neuronal Ensembles: From Winner-Take-All to Winners-Share-All , 1997, Neural Computation.

[61]  Peter W. Kalivas,et al.  The Basal Forebrain , 1991, Advances in Experimental Medicine and Biology.

[62]  G. Krauthamer Sensory Functions of the Neostriatum , 1979 .

[63]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.