Constructing folksonomies from user-specified relations on flickr

Automatic folksonomy construction from tags has attracted much attention recently. However, inferring hierarchical relations between concepts from tags has a drawback in that it is difficult to distinguish between more popular and more general concepts. Instead of tags we propose to use user-specified relations for learning folksonomy. We explore two statistical frameworks for aggregating many shallow individual hierarchies, expressed through the collection/set relations on the social photosharing site Flickr, into a common deeper folksonomy that reflects how a community organizes knowledge. Our approach addresses a number of challenges that arise while aggregating information from diverse users, namely noisy vocabulary, and variations in the granularity level of the concepts expressed. Our second contribution is a method for automatically evaluating learned folksonomy by comparing it to a reference taxonomy, e.g., the Web directory created by the Open Directory Project. Our empirical results suggest that user-specified relations are a good source of evidence for learning folksonomies.

[1]  Luc Steels,et al.  Social Tagging in Community Memories , 2008, AAAI Spring Symposium: Social Information Processing.

[2]  Steffen Staab,et al.  Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis , 2005, J. Artif. Intell. Res..

[3]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.

[4]  Kristina Lerman,et al.  Exploiting Social Annotation for Automatic Resource Discovery , 2007, ArXiv.

[5]  Ellen Riloff,et al.  Semantic Class Learning from the Web with Hyponym Pattern Linkage Graphs , 2008, ACL.

[6]  Peter Mika,et al.  Ontologies are us: A unified model of social networks and semantics , 2005, J. Web Semant..

[7]  B. Shneiderman Science 2.0 , 2008, Science.

[8]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[9]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[10]  Kristina Lerman,et al.  Social Information Processing in News Aggregation , 2007, IEEE Internet Computing.

[11]  Filippo Menczer,et al.  Bookmark Hierarchies and Collaborative Recommendation , 2006, AAAI.

[12]  Christopher H. Brooks,et al.  Improved annotation of the blogosphere via autotagging and hierarchical clustering , 2006, WWW '06.

[13]  J. Tenenbaum,et al.  Learning Domain Structures , 2004 .

[14]  Hector Garcia-Molina,et al.  Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems , 2006 .

[15]  Renée J. Miller,et al.  Leveraging data and structure in ontology integration , 2007, SIGMOD '07.

[16]  P. Schmitz,et al.  Inducing Ontology from Flickr Tags , 2006 .

[17]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[18]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[19]  W. Bruce Croft,et al.  Deriving concept hierarchies from text , 1999, SIGIR '99.

[20]  Kristina Lerman,et al.  Personalizing Image Search Results on Flickr , 2007, ArXiv.

[21]  Marius Pasca,et al.  Acquisition of categorized named entities for web search , 2004, CIKM '04.

[22]  Steffen Staab,et al.  Measuring Similarity between Ontologies , 2002, EKAW.

[23]  Yong Yu,et al.  An Unsupervised Model for Exploring Hierarchical Semantics from Social Annotations , 2007, ISWC/ASWC.

[24]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  Daniel Jurafsky,et al.  Semantic Taxonomy Induction from Heterogenous Evidence , 2006, ACL.