GRÖBNER BASES , PADÉ APPROXIMATION , AND DECODING OF LINEAR CODES
暂无分享,去创建一个
[1] Patrick Fitzpatrick,et al. A Gröbner basis technique for Padé approximation , 1992 .
[2] H. Mattson,et al. The mathematical theory of coding , 1976, Proceedings of the IEEE.
[3] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[4] Martin Kreuzer,et al. Computational Commutative Algebra 1 , 2000 .
[5] T. R. N. Rao,et al. Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.
[6] H. Wynn,et al. Algebraic Statistics: Computational Commutative Algebra in Statistics , 2000 .
[7] H. O'Keeffe,et al. Gröbner basis solutions of constrained interpolation problems , 2002 .
[8] David Ortiz,et al. Some remarks on Fitzpatrick and Flynn's Gröbner basis technique for Padé approximation , 2003, J. Symb. Comput..
[9] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[10] Iwan M. Duursma,et al. Majority coset decoding , 1993, IEEE Trans. Inf. Theory.
[11] Shuhong Gao,et al. Computing Gröbner Bases for Vanishing Ideals of Finite Sets of Points , 2006, AAECC.
[12] Shuhong Gao,et al. A New Algorithm for Decoding Reed-Solomon Codes , 2003 .
[13] L. O'carroll. AN INTRODUCTION TO GRÖBNER BASES (Graduate Studies in Mathematics 3) , 1996 .
[14] Maria Grazia Marinari,et al. Gröbner bases of ideals defined by functionals with an application to ideals of projective points , 1993, Applicable Algebra in Engineering, Communication and Computing.
[15] R. Laubenbacher,et al. A computational algebra approach to the reverse engineering of gene regulatory networks. , 2003, Journal of theoretical biology.
[16] Shu Lin,et al. Polynomial codes , 1968, IEEE Trans. Inf. Theory.
[17] Martin Kreuzer,et al. Computing Ideals of Points , 2000, J. Symb. Comput..
[18] Johan P. Hansen,et al. Algebraic Geometry Codes , 2005 .
[19] Bruno Buchberger,et al. The Construction of Multivariate Polynomials with Preassigned Zeros , 1982, EUROCAM.
[20] V. D. Goppa. Geometry and Codes , 1988 .