An Initialization Strategy for High-Dimensional Surrogate-Based Expensive Black-Box Optimization

Surrogate-based optimization methods build surrogate models of expensive black-box objective and constraint functions using previously evaluated points and use these models to guide the search for an optimal solution. These methods require considerably more computational overhead and memory than other optimization methods, so their applicability to high-dimensional problems is somewhat limited. Many surrogates, such as radial basis functions (RBFs) with linear polynomial tails, require a maximal set of affinely independent points to fit the initial model. This paper proposes an initialization strategy for surrogate-based methods called underdetermined simplex gradient descent (USGD) that uses underdetermined simplex gradients to make progress towards the optimum while building a maximal set of affinely independent points. Numerical experiments on a 72-dimensional groundwater bioremediation problem and on 200-dimensional and 1000-dimensional instances of 16 well-known test problems demonstrate that the proposed USGD initialization strategy yields dramatic improvements in the objective function value compared to standard initialization procedures. Moreover, USGD initialization substantially improves the performance of two optimization algorithms that use RBF surrogates compared to standard initialization methods on the same test problems.

[1]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[2]  Rommel G. Regis,et al.  Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions , 2011, Comput. Oper. Res..

[3]  Tamara G. Kolda,et al.  On the Convergence of Asynchronous Parallel Pattern Search , 2002, SIAM J. Optim..

[4]  N. Zheng,et al.  Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models , 2006, J. Glob. Optim..

[5]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[6]  C. Shoemaker,et al.  DYNAMIC OPTIMAL CONTROL OF IN-SITU BIOREMEDIATION OF GROUND WATER , 1998 .

[7]  Humberto Rocha,et al.  Incorporating minimum Frobenius norm models in direct search , 2010, Comput. Optim. Appl..

[8]  Christine A. Shoemaker,et al.  Comparison of Optimization Methods for Ground-Water Bioremediation , 1999 .

[9]  L. N. Vicente,et al.  Geometry of sample sets in derivative-free optimization: polynomial regression and underdetermined interpolation , 2008 .

[10]  Cheng Liao,et al.  HYBRID-SURROGATE-MODEL-BASED EFFICIENT GLOBAL OPTIMIZATION FOR HIGH-DIMENSIONAL ANTENNA DESIGN , 2012 .

[11]  James M. Parr,et al.  Infill sampling criteria for surrogate-based optimization with constraint handling , 2012 .

[12]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[13]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[14]  Fabio Schoen,et al.  Global optimization of expensive black box problems with a known lower bound , 2013, J. Glob. Optim..

[15]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[16]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[17]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[18]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[19]  H. Edwin Romeijn,et al.  A Response Surface Approach to Beam Orientation Optimization in Intensity-Modulated Radiation Therapy Treatment Planning , 2009, INFORMS J. Comput..

[20]  M. Bierlaire,et al.  Boosters: A Derivative-Free Algorithm Based on Radial Basis Functions , 2009 .

[21]  Charles Audet,et al.  Parallel Space Decomposition of the Mesh Adaptive Direct Search Algorithm , 2007, SIAM J. Optim..

[22]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[23]  Virginia Torczon,et al.  On the Convergence of Pattern Search Algorithms , 1997, SIAM J. Optim..

[24]  Katya Scheinberg,et al.  Recent progress in unconstrained nonlinear optimization without derivatives , 1997, Math. Program..

[25]  Clark A. Mount-Campbell,et al.  Process optimization via neural network metamodeling , 2002 .

[26]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[27]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[28]  Christine A. Shoemaker,et al.  A quasi-multistart framework for global optimization of expensive functions using response surface models , 2013, J. Glob. Optim..

[29]  Pedro S. Rodríguez-Hernández,et al.  On sequential and parallel non-monotone derivative-free algorithms for box constrained optimization , 2013, Optim. Methods Softw..

[30]  Adam D. Bull,et al.  Convergence Rates of Efficient Global Optimization Algorithms , 2011, J. Mach. Learn. Res..

[31]  Christine A. Shoemaker,et al.  ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions , 2008, SIAM J. Sci. Comput..

[32]  V. Magar,et al.  Innovative methods in support of bioremediation , 2001 .

[33]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[34]  M. Roma,et al.  Large-Scale Nonlinear Optimization , 2006 .

[35]  Luís N. Vicente,et al.  A particle swarm pattern search method for bound constrained global optimization , 2007, J. Glob. Optim..

[36]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[37]  Luís N. Vicente,et al.  PSwarm: a hybrid solver for linearly constrained global derivative-free optimization , 2009, Optim. Methods Softw..

[38]  C. Shoemaker,et al.  Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization , 2013 .

[39]  Maria do Carmo Lopes,et al.  Selection of intensity modulated radiation therapy treatment beam directions using radial basis functions within a pattern search methods framework , 2013, J. Glob. Optim..

[40]  Jack P. C. Kleijnen,et al.  Searching for important factors in simulation models with many factors: Sequential bifurcation , 1997 .

[41]  M. J. D. Powell,et al.  UOBYQA: unconstrained optimization by quadratic approximation , 2002, Math. Program..

[42]  M. Patriksson,et al.  A method for simulation based optimization using radial basis functions , 2010 .

[43]  G. Gary Wang,et al.  Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions , 2010 .

[44]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[45]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[46]  A. I. F. Vaz,et al.  Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization , 2012 .

[47]  Michèle Sebag,et al.  Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy , 2012, GECCO '12.

[48]  Meng Wang,et al.  Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework , 2003 .

[49]  Katya Scheinberg,et al.  Geometry of interpolation sets in derivative free optimization , 2007, Math. Program..

[50]  Christine A. Shoemaker,et al.  Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms , 2011, SIAM J. Optim..

[51]  E. Vázquez,et al.  Convergence properties of the expected improvement algorithm with fixed mean and covariance functions , 2007, 0712.3744.

[52]  Luís N. Vicente,et al.  Using Sampling and Simplex Derivatives in Pattern Search Methods , 2007, SIAM J. Optim..

[53]  G. G. Wang,et al.  Metamodeling for High Dimensional Simulation-Based Design Problems , 2010 .

[54]  R. Regis Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points , 2014 .

[55]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[56]  Christine A. Shoemaker,et al.  Improved Strategies for Radial basis Function Methods for Global Optimization , 2007, J. Glob. Optim..

[57]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[58]  R. Oeuvray Trust-region methods based on radial basis functions with application to biomedical imaging , 2005 .

[59]  Sébastien Le Digabel,et al.  Use of quadratic models with mesh-adaptive direct search for constrained black box optimization , 2011, Optim. Methods Softw..

[60]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[61]  Eric Walter,et al.  An informational approach to the global optimization of expensive-to-evaluate functions , 2006, J. Glob. Optim..

[62]  J. M. Lucas,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd edition , 2010 .

[63]  Katya Scheinberg,et al.  Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points , 2009, SIAM J. Optim..

[64]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[65]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[66]  Charles Audet,et al.  Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points , 2006, SIAM J. Optim..

[67]  Katya Scheinberg,et al.  Self-Correcting Geometry in Model-Based Algorithms for Derivative-Free Unconstrained Optimization , 2010, SIAM J. Optim..

[68]  L. Watson,et al.  Why Not Run the Efficient Global Optimization Algorithm with Multiple Surrogates , 2010 .

[69]  Mattias Björkman,et al.  Global Optimization of Costly Nonconvex Functions Using Radial Basis Functions , 2000 .

[70]  Tamara G. Kolda,et al.  Algorithm 856: APPSPACK 4.0: asynchronous parallel pattern search for derivative-free optimization , 2006, TOMS.

[71]  Christine A. Shoemaker,et al.  A Stochastic Radial Basis Function Method for the Global Optimization of Expensive Functions , 2007, INFORMS J. Comput..

[72]  Kenneth Holmström,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization , 2008, J. Glob. Optim..

[73]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[74]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[75]  Julio R. Banga,et al.  Improved scatter search for the global optimization of computationally expensive dynamic models , 2009, J. Glob. Optim..