Merging multireference perturbation and density-functional theories by means of range separation: Potential curves for Be 2 , Mg 2 , and Ca 2

A rigorous combination of multireference perturbation theory and density functional theory (DFT) is proposed. Based on a range separation of the regular two-electron Coulomb interaction, it combines a short-range density functional with second-order strongly contracted n-electron valence state perturbation theory (sc-NEVPT2). The huge advantage of the sc-NEVPT2 approach is that the density is unchanged through first order due to a generalized-Brillouin-type theorem so that the computationally cumbersome self-consistency contribution of short-range DFT to the second-order energy correction equals zero. The method yields very promising results for the van der Waals systems Be{sub 2}, Mg{sub 2}, and Ca{sub 2}; including the multireference system Be{sub 2}.

[1]  Florent Réal,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f0 actinide species. , 2009, The Journal of chemical physics.

[2]  H. Stoll,et al.  Development and assessment of a short-range meta-GGA functional. , 2009, The Journal of chemical physics.

[3]  Thomas M Henderson,et al.  Long-range-corrected hybrids including random phase approximation correlation. , 2009, The Journal of chemical physics.

[4]  Andreas Savin,et al.  Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation. , 2008, Physical review letters.

[5]  Emmanuel Fromager,et al.  Self-consistent many-body perturbation theory in range-separated density-functional theory : A one-electron reduced-density-matrix-based formulation , 2008 .

[6]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[7]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[8]  Andreas Savin,et al.  Local density approximation for long-range or for short-range energy functionals? , 2006, physics/0605024.

[9]  P. Gori-Giorgi,et al.  Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence , 2005, cond-mat/0511221.

[10]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[11]  Andreas Savin,et al.  van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections , 2005, cond-mat/0505062.

[12]  P. Pyykkö,et al.  Comparative calculations for the A-frame molecules [S(MPH3)2] (M = Cu, Ag, Au) at levels up to CCSD(T) , 2005 .

[13]  R. Bartlett,et al.  Intermolecular potential energy surfaces of weakly bound dimers computed from ab initio density functional theory: The right answer for the right reason , 2005 .

[14]  I. Røeggen,et al.  Interatomic potential for the X1Σ +g state of Be2, revisited , 2005 .

[15]  A. Savin,et al.  Short-Range Exchange-Correlation Energy of a Uniform Electron Gas with Modified Electron-Electron Interaction , 2004, cond-mat/0611559.

[16]  Andreas Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004 .

[17]  Gustavo E Scuseria,et al.  Assessment and validation of a screened Coulomb hybrid density functional. , 2004, The Journal of chemical physics.

[18]  B. Roos,et al.  Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers , 2004 .

[19]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[20]  R. Cimiraglia,et al.  n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants , 2002 .

[21]  E. Tiemann,et al.  Ground-state potential of the Ca dimer from Fourier-transform spectroscopy , 2002 .

[22]  Jacek Koput,et al.  Ab initio potential energy surface and vibrational-rotational energy levels of X2Σ+ CaOH , 2002 .

[23]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[24]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[25]  R. Dreizler,et al.  van der Waals bonds in density-functional theory , 2000 .

[26]  Manfred Lein,et al.  Toward the description of van der Waals interactions within density functional theory , 1999, J. Comput. Chem..

[27]  Kenneth G. Dyall,et al.  The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function , 1995 .

[28]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[29]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[30]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[31]  A. Douglas,et al.  Absorption spectrum of the Mg2 molecule , 1970 .

[32]  Bernard Levy,et al.  Generalized brillouin theorem for multiconfigurational SCF theories , 1968 .

[33]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[34]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .