The Δ I = 2 bands in 109 In: possible antimagnetic rotation

The high-spin structure of 109 In was investigated with the 100 Mo ( 14 N , 5n ) 109 In fusion-evaporation reaction at CIAE, Beijing. Eleven new γ -rays of 109 In were identified, by which the bandheads of the Δ I = 2 rotational bands were confirmed. The configurations were assigned with the help of the systematic discussion. Furthermore, the rotational bands are compared with the tilted-axis cranking calculations based on a relativistic mean-field approach. The rotational bands involving the 1 p 1 h excitation to the π d 5 / 2 and π g 7 / 2 orbitals

[1]  J. Meng Relativistic Density Functional for Nuclear Structure , 2016 .

[2]  D. Yang 杨,et al.  Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach , 2016 .

[3]  J. Meng,et al.  Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum , 2015, 1507.01079.

[4]  P. Zhao,et al.  Magnetic and antimagnetic rotation in Cd110 within tilted axis cranking relativistic mean-field theory , 2015 .

[5]  Yangheng Zheng,et al.  High-spin states and possible "stapler" band in In-115 , 2015 .

[6]  Y. Liu,et al.  Dramatic transition between electric and magnetic rotations in 106Ag , 2014 .

[7]  S. Y. Wang,et al.  Competition between antimagnetic and core rotation in Cd-109 within covariant density functional theory , 2014 .

[8]  H. Ma,et al.  Lifetime measurements and magnetic rotation in 107 Ag , 2014 .

[9]  B. S. Naidu,et al.  Multiple antimagnetic rotation bands in odd- A 107 Cd , 2013 .

[10]  J. Meng,et al.  Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation , 2013, 1301.1808.

[11]  X. Li,et al.  Candidate antimagnetic rotational band in In-112 , 2012 .

[12]  G. Li,et al.  Magnetic rotation in doubly odd nucleus 114In , 2012 .

[13]  M. Oshima,et al.  Possible antimagnetic rotational band and neutron alignment in 101 Pd , 2012 .

[14]  Lu Jingbin,et al.  High Spin States of (113)In , 2012 .

[15]  H. Liang,et al.  Covariant density functional theory for antimagnetic rotation , 2012, 1205.0867.

[16]  H. Liang,et al.  Antimagnetic rotation band in nuclei: a microscopic description. , 2011, Physical review letters.

[17]  S. Roy,et al.  Systematics of antimagnetic rotation in even–even Cd isotopes , 2010, 1007.4950.

[18]  郑云,et al.  New band structures in ~(107)Ag , 2011 .

[19]  X. Li,et al.  Band structures in Ag 106 and systematics of shears mechanism in the A ~ 110 mass region , 2010 .

[20]  Lihua Zhu,et al.  New level scheme and magnetic rotation in 112In , 2010 .

[21]  J. Yao,et al.  New parametrization for the nuclear covariant energy density functional with a point-coupling interaction , 2010, 1002.1789.

[22]  R. Garg,et al.  Evidence of antimagnetic rotation in odd-A 105 Cd , 2010 .

[23]  S. Juutinen,et al.  High-spin intruder band in 107In , 2010 .

[24]  吴晓光,et al.  Shears bands in 112 In , 2009 .

[25]  W. Long,et al.  Density-dependent relativistic Hartree-Fock approach , 2005, nucl-th/0512086.

[26]  H. Toki,et al.  Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei , 2005, nucl-th/0508020.

[27]  MA Rui-guang Magnetic Rotation in ~(106)Ag , 2006 .

[28]  K. Vetter,et al.  Investigation of antimagnetic rotation in light Cadmium nuclei: **106,108Cd , 2005 .

[29]  Peter Ring,et al.  Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure , 2005 .

[30]  S. Bhattacharya,et al.  Observation of antimagnetic rotation in {sup 108}Cd , 2005 .

[31]  K. Vetter,et al.  Evidence for a new type of shears mechanism in 106Cd. , 2003, Physical review letters.

[32]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[33]  E. Paul,et al.  Spectroscopy in the Z=49108,110In isotopes: Lifetime measurements in shears bands , 2001 .

[34]  S. Frauendorf,et al.  Spontaneous symmetry breaking in rotating nuclei , 2001 .

[35]  J. C. Waddington,et al.  Particle-hole induced electric and magnetic rotation in 111 In , 1998 .

[36]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[37]  D. C. Radford,et al.  ESCL8R and LEVIT8R: Software for interactive graphical analysis of HPGe coincidence data sets , 1995 .

[38]  A. Lampinen,et al.  The role of the shape driving neutron orbital in 108Cd , 1993 .

[39]  Hoch,et al.  Nuclear ground state properties in a relativistic point coupling model. , 1992, Physical review. C, Nuclear physics.

[40]  H. Kluge,et al.  Oblate collective bands in 199Pb and 200Pb , 1992 .

[41]  W. Nazarewicz,et al.  First observation of a collective dipole rotational band in the A∼200 mass region☆ , 1992 .

[42]  J. Walecka,et al.  The Relativistic Nuclear Many Body Problem , 1984 .