DNA Binding and Recognition of a CC Mismatch in a DNA Duplex by Water-Soluble Peptidocalix[4]arenes: Synthesis and Applications.

Water-soluble peptidocalix[4]arenes were synthesized by the introduction of arginine-rich narrow groove-binding residues at lower rims through solid-phase synthesis. The study of binding of these water-soluble bidentate ligands to well-matched and mismatched DNA duplexes by fluorescent titrations, ethidium bromide (EB) displacement assays, DNA-melting experiments, and circular dichroism (CD) analysis revealed a sequence-dependent groove-binding mechanism.

[1]  C. Déjugnat,et al.  Histidine-Based Lipopeptides Enhance Cleavage of Nucleic Acids: Interactions with DNA and Hydrolytic Properties. , 2015, Bioconjugate chemistry.

[2]  F. Rominger,et al.  Efficient synthesis of lower rim α-hydrazino tetrazolocalix[4]arenes via an Ugi-azide multicomponent reaction , 2015 .

[3]  M. Orozco,et al.  The structural impact of DNA mismatches , 2015, Nucleic acids research.

[4]  Nahid S. Alavijeh,et al.  Protein surface recognition by calixarenes , 2014 .

[5]  S. Bhattacharya,et al.  DNA binders in clinical trials and chemotherapy. , 2014, Bioorganic & medicinal chemistry.

[6]  S. Kundu,et al.  Role of Minor Groove Width and Hydration Pattern on Amsacrine Interaction with DNA , 2013, PloS one.

[7]  V. Franceschi,et al.  Arginine clustering on calix[4]arene macrocycles for improved cell penetration and DNA delivery , 2013, Nature Communications.

[8]  T. Schrader,et al.  Interactions of Calix[n]arenes with Nucleic Acids , 2012, Natural product communications.

[9]  M. Vázquez,et al.  DNA Recognition by Synthetic Constructs , 2011, Chembiochem : a European journal of chemical biology.

[10]  Y. Mély,et al.  Virus-sized DNA nanoparticles for gene delivery based on micelles of cationic calixarenes. , 2011, Chemistry.

[11]  R. Mann,et al.  Origins of specificity in protein-DNA recognition. , 2010, Annual review of biochemistry.

[12]  H. Parrot-Lopez,et al.  Enantioselective recognition of amino acids by chiral peptido-calix[4]arenes and thiacalix[4]arenes , 2009 .

[13]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[14]  T. Schrader,et al.  DNA Recognition with Large Calixarene Dimers and Varying Spacers , 2008 .

[15]  Michael A. Crickmore,et al.  Functional Specificity of a Hox Protein Mediated by the Recognition of Minor Groove Structure , 2007, Cell.

[16]  F. Sansone,et al.  N-linked peptidocalix[4]arene bisureas as enantioselective receptors for amino acid derivatives. , 2007, The Journal of organic chemistry.

[17]  F. Sansone,et al.  Calixarene-based multivalent ligands. , 2007, Chemical Society reviews.

[18]  Janez Plavec,et al.  A unified model for the origin of DNA sequence-directed curvature. , 2003, Biopolymers.

[19]  H. Dyson,et al.  Monomeric complex of human orphan estrogen related receptor-2 with DNA: a pseudo-dimer interface mediates extended half-site recognition. , 2003, Journal of molecular biology.

[20]  C. Garvie,et al.  Recognition of specific DNA sequences. , 2001, Molecular cell.

[21]  M Wilmanns,et al.  Differential dimer activities of the transcription factor Oct-1 by DNA-induced interface swapping. , 2001, Molecular cell.

[22]  P. Sigler,et al.  DNA-binding mechanism of the monomeric orphan nuclear receptor NGFI-B , 1999, Nature Structural Biology.

[23]  A. Vershon,et al.  Crystal structure of the MATa1/MATalpha2 homeodomain heterodimer in complex with DNA containing an A-tract. , 1998, Nucleic acids research.