Large-stroke MEMS deformable mirrors for adaptive optics

Surface-micromachined deformable mirrors that exhibit greater than 10 /spl mu/m of stroke are presented. The segmented arrays described here consist of 61 and 85 hexagonal, piston/tip/tilt mirrors (three actuators each) with diameters of 500 and 430 /spl mu/m, respectively, and fill a 4 mm circular aperture. Devices were packaged in 208 and 256 pin-grid arrays and driven by a compact control board designed for turn-key operation. After metallization and packaging mirror bow is /spl sim/680 nm (/spl lambda//1), but a heat-treatment procedure is proposed for controlling mirror curvature to better than /spl lambda//10. An optical test bed was used to demonstrate basic beam splitting and open-loop aberration correction, the results of which are also presented.

[1]  David R. Wheeler,et al.  Vapor deposition of amino-functionalized self-assembled monolayers on MEMS , 2003, SPIE MOEMS-MEMS.

[2]  Hao Zhu,et al.  Megapixel wavefront correctors , 2004, SPIE Astronomical Telescopes + Instrumentation.

[3]  Geunyoung Yoon,et al.  Use of a microelectromechanical mirror for adaptive optics in the human eye. , 2002, Optics letters.

[4]  Zhili Hao,et al.  Design and fabrication of a continuous membrane deformable mirror , 2003, SPIE MOEMS-MEMS.

[5]  William M. Mansfield,et al.  A membrane mirror with transparent electrode for adaptive optics , 2005, SPIE MOEMS-MEMS.

[6]  Michael Schoen,et al.  Electrostatic membrane deformable mirror wavefront control systems: design and analysis , 2004, SPIE Optics + Photonics.

[7]  Gleb Vdovin,et al.  Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics , 2004, SPIE Astronomical Telescopes + Instrumentation.

[8]  A. Chand,et al.  Strain studies in LPCVD polysilicon for surface micromachined devices , 1999 .

[9]  Michael A. Helmbrecht,et al.  Advanced wavefront correction technology for the next generation of adaptive optics equipped ophthalmic instrumentation , 2005 .

[10]  Harald Schenk,et al.  Improved vision by eye aberration correction using an active-matrix-addressed micromirror array , 2003, SPIE MOEMS-MEMS.

[11]  Scot S. Olivier Advanced adaptive optics technology development , 2002, SPIE Optics + Photonics.

[12]  Laurent Jocou,et al.  A micromachined deformable mirror for adaptive optics , 2003, SPIE MOEMS-MEMS.

[13]  Kevin J. Malloy,et al.  Stress and curvature in MEMS mirrors , 2003, SPIE MOEMS-MEMS.

[14]  Mikhail A. Vorontsov,et al.  Performance evaluation of micromachined mirror arrays for adaptive optics , 2000, SPIE Optics + Photonics.

[15]  O. Spahn,et al.  Low Stress, High Reflectivity Thin Films for MEMS Mirrors , 2002 .

[16]  J. Sniegowski Multi-level polysilicon surface-micromachining technology: Applications and issues , 1996 .

[17]  Paul J. McWhorter,et al.  Micro-electro-optical devices in a five-level polysilicon surface-micromachining technology , 1998, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[18]  Scot S. Olivier,et al.  MOEMS spatial light modulator development at the Center for Adaptive Optics , 2003, SPIE MOEMS-MEMS.

[19]  W. Sweatt Reduction of Zernike wavefront errors using a micromirror array , 2005 .

[20]  O. Degani,et al.  Pull-in study of an electrostatic torsion microactuator , 1998 .

[21]  Michael C. Roggemann,et al.  Surface micromachined segmented mirrors for adaptive optics , 1999 .

[22]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[23]  Eui-Hyeok Yang,et al.  Piezoelectric unimorph MEMS deformable mirror for ultra-large telescopes , 2005, SPIE MOEMS-MEMS.

[24]  Thomas G. Bifano,et al.  Large-scale polysilicon surface-micromachined spatial light modulator , 2003, SPIE MOEMS-MEMS.

[25]  J. Wołoszyn A method for controlling residual film stress in LPCVD polysilicon films for surface micromachined MEMS , 2004, 2004 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (IEEE Cat. No.04CH37530).

[26]  Tong-Yi Zhang,et al.  Rapid thermal annealing of polysilicon thin films , 1998 .