Molecular Surface Abstraction

In this paper we introduce a visualization technique that provides an abstracted view of the shape and spatio-physico-chemical properties of complex molecules. Unlike existing molecular viewing methods, our approach suppresses small details to facilitate rapid comprehension, yet marks the location of significant features so they remain visible. Our approach uses a combination of filters and mesh restructuring to generate a simplified representation that conveys the overall shape and spatio-physico-chemical properties (e.g. electrostatic charge). Surface markings are then used in the place of important removed details, as well as to supply additional information. These simplified representations are amenable to display using stylized rendering algorithms to further enhance comprehension. Our initial experience suggests that our approach is particularly useful in browsing collections of large molecules and in readily making comparisons between them.

[1]  Adam Finkelstein,et al.  Interactive rendering of suggestive contours with temporal coherence , 2004, NPAR '04.

[2]  John Tate,et al.  Molecular visualization. , 2003, Methods of biochemical analysis.

[3]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[4]  Ho-Lun Cheng,et al.  Quality mesh generation for molecular skin surfaces using restricted union of balls , 2005, VIS 05. IEEE Visualization, 2005..

[5]  D S Goodsell,et al.  Molecular illustration in black and white. , 1992, Journal of molecular graphics.

[6]  Daniel Baum,et al.  Visualizing dynamic molecular conformations , 2002, IEEE Visualization, 2002. VIS 2002..

[7]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[8]  Brian Wyvill,et al.  Interactive decal compositing with discrete exponential maps , 2006, ACM Trans. Graph..

[9]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Amitabh Varshney,et al.  Light Collages: lighting design for effective visualization , 2004, IEEE Visualization 2004.

[11]  Mariette Yvinec,et al.  Computing connolly surfaces , 1992 .

[12]  Hayden Landis,et al.  Production-Ready Global Illumination , 2004 .

[13]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[14]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[15]  R. Norel,et al.  Electrostatic aspects of protein-protein interactions. , 2000, Current opinion in structural biology.

[16]  Guillermo Sapiro,et al.  Texture Synthesis for 3D Shape Representation , 2003, IEEE Trans. Vis. Comput. Graph..

[17]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[18]  M Hendlich,et al.  LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. , 1997, Journal of molecular graphics & modelling.

[19]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[20]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[21]  Frederick P. Brooks,et al.  Fast analytical computation of Richard's smooth molecular surface , 1993, Proceedings Visualization '93.

[22]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[23]  Jean-Claude Spehner,et al.  Fast and robust computation of molecular surfaces , 1995, SCG '95.

[24]  David S Goodsell,et al.  Visual methods from atoms to cells. , 2005, Structure.

[25]  M S Chapman,et al.  Mapping the surface properties of macromolecules , 1993, Protein science : a publication of the Protein Society.

[26]  Penny Rheingans,et al.  Probabilistic surfaces: point based primitives to show surface uncertainty , 2002, IEEE Visualization, 2002. VIS 2002..

[27]  M L Connolly,et al.  The molecular surface package. , 1993, Journal of molecular graphics.

[28]  Michel F Sanner,et al.  A component-based software environment for visualizing large macromolecular assemblies. , 2005, Structure.

[29]  Conrad C. Huang,et al.  Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. , 2005, Structure.

[30]  Amitabh Varshney,et al.  Representing thermal vibrations and uncertainty in molecular surfaces , 2002, IS&T/SPIE Electronic Imaging.

[31]  Adam Finkelstein,et al.  Suggestive contours for conveying shape , 2003, ACM Trans. Graph..

[32]  Paolo Cignoni,et al.  Ambient Occlusion and Edge Cueing for Enhancing Real Time Molecular Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[34]  Robin Taylor,et al.  A new test set for validating predictions of protein–ligand interaction , 2002, Proteins.

[35]  David P. Luebke,et al.  A Developer's Survey of Polygonal Simplification Algorithms , 2001, IEEE Computer Graphics and Applications.

[36]  K. Fujiwara Eigenvalues of Laplacians on a closed Riemannian manifold and its nets , 1995 .