Silicon Lasers and Photonic Integrated Circuits

This chapter discusses photonic integration on silicon from the material property, device as well as photonic circuit point of view. The progressive growth of silicon-based electronic integrated circuits (ICs) has followed Moore’s Law and has been driven by the roadmap of conventional electronic ICs. Silicon is arguably the primary host material platform for future photonic integrated circuits (PICs) as well, particularly for applications beyond conventional fiber-optical telecommunications. Until recently, the lack of a laser source on silicon has been seen as the key hurdle limiting the usefulness and complexity of silicon photonic integrated circuits. In this chapter, we review the numerous efforts including bandgap engineering, Raman scattering, monolithic heteroepitaxy and hybrid integration to realize efficient light emission, amplification and lasing on silicon. The state-of-the-art integration technologies for narrow linewidth lasers and high-speed modulators are also discussed.

[1]  G. Davies,et al.  The optical properties of luminescence centres in silicon , 1989 .

[2]  J. E. Bowers,et al.  An Integrated Hybrid Silicon Multiwavelength AWG Laser , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  L. Di Cioccio,et al.  A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks , 2008, IEEE Photonics Technology Letters.

[4]  Di Liang,et al.  Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate , 2008 .

[5]  Yongbo Tang,et al.  Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 μm transmission. , 2012, Optics express.

[6]  Wolfgang Stolz,et al.  Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (0 0 1) silicon substrate by MOVPE , 2008 .

[7]  D. Thomson,et al.  50-Gb/s Silicon Optical Modulator , 2012, IEEE Photonics Technology Letters.

[8]  Zetian Mi,et al.  Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon , 2005 .

[9]  Graham T. Reed,et al.  Silicon Photonics: The State of the Art , 2008 .

[11]  M. Lamponi,et al.  Widely wavelength tunable hybrid III–V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique , 2012, The 9th International Conference on Group IV Photonics (GFP).

[12]  G. D. Watkins Defects in irradiated silicon: EPR and electron-nuclear double resonance of interstitial boron , 1975 .

[13]  J. Carreras,et al.  Silicon Nanocrystal Field-Effect Light-Emitting Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Di Liang,et al.  Photonic Integration on the Hybrid Silicon Evanescent Device Platform , 2008 .

[15]  D. J. Lockwood,et al.  Silicon–germanium nanostructures for on-chip optical interconnects , 2009 .

[16]  S. Sekiguchi,et al.  Flip-chip-bonded, 8-wavelength AlGaInAs DFB laser array operable up to 70°C for silicon WDM interconnects , 2014, 2014 The European Conference on Optical Communication (ECOC).

[17]  A. Knights,et al.  Silicon Photonics: An Introduction , 2004 .

[18]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[19]  Alberto Carnera,et al.  Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .

[20]  R. Claps,et al.  Observation of stimulated Raman amplification in silicon waveguides , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[21]  Dieter Bimberg,et al.  Quantum dots: promises and accomplishments , 2011 .

[22]  Yoshio Itoh,et al.  Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .

[23]  H. Tsang,et al.  Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides , 2004 .

[24]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[25]  Juha Sinkkonen,et al.  Raman scattering from very thin Si layers of Si/SiO2 superlattices: Experimental evidence of structural modification in the 0.8–3.5 nm thickness region , 1999 .

[26]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[27]  R. Walters,et al.  Field-effect electroluminescence in silicon nanocrystals , 2005, Nature materials.

[28]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[29]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[30]  Takeo Maruyama,et al.  GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate. , 2006, Optics express.

[31]  R. Dupuis,et al.  Degradation of GaAs lasers grown by metalorganic chemical vapor deposition on Si substrates , 1987 .

[32]  R. G. Beausoleil,et al.  Optimization of Hybrid Silicon Microring Lasers , 2011, IEEE Photonics Journal.

[33]  Juthika Basak,et al.  High-Speed Silicon Modulator for Future VLSI Interconnect , 2007 .

[34]  Siegfried Labeit,et al.  The Sarcomeric Protein Nebulin: Another Multifunctional Giant in Charge of Muscle Strength Optimization , 2012, Front. Physio..

[35]  Domenico Pacifici,et al.  Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification , 2003 .

[36]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[37]  J. Bowers,et al.  High speed hybrid silicon evanescent electroabsorption modulator. , 2008, Optics express.

[38]  S. Valette,et al.  Hybrid integration of semiconductor lasers with Si-based single-mode ridge waveguides , 1992 .

[39]  Lorenzo Pavesi Optical Gain and Lasing in Low Dimensional Silicon: The Quest for an Injection Laser , 2009 .

[40]  Lorenzo Pavesi,et al.  Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals , 2003 .

[41]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[42]  D. Guckenberger,et al.  Silicon photonics for high data rate optical interconnect , 2012, 2012 Optical Interconnects Conference.

[43]  Michael L Davenport,et al.  Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. , 2014, Optics express.

[44]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[45]  B. Jalali,et al.  Energy harvesting in silicon Raman amplifiers , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[46]  Jang-Kyoo Shin,et al.  Reduction of threading dislocation density in InP‐on‐Si heteroepitaxy with strained short‐period superlattices , 1996 .

[47]  Yasuhiko Arakawa,et al.  High-Temperature 1.3 µm InAs/GaAs Quantum Dot Lasers on Si Substrates Fabricated by Wafer Bonding , 2013 .

[48]  M.K. Smit,et al.  Past and future of InP-based Photonic Integration , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[49]  H. Bleichner,et al.  The ambipolar Auger coefficient: Measured temperature dependence in electron irradiated and highly injected n-type silicon , 1997 .

[50]  Kang L. Wang,et al.  An investigation on surface conditions for Si molecular beam epitaxial (MBE) growth , 1985 .

[51]  John E. Bowers,et al.  Integrated AlGaInAs-silicon evanescent race track laser and photodetector. , 2007 .

[52]  Y. Arakawa,et al.  III-V/Si hybrid photonic devices by direct fusion bonding , 2012, Scientific Reports.

[53]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[54]  L. Thylen A Moores law for photonics , 2006, 2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials.

[55]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[56]  G. Roelkens,et al.  Thin-film devices fabricated with benzocyclobutene adhesive wafer bonding , 2005, Journal of Lightwave Technology.

[57]  Di Liang,et al.  Fabrication of Silicon-on-Diamond Substrate and Low-Loss Optical Waveguides , 2011, IEEE Photonics Technology Letters.

[58]  D Van Thourhout,et al.  III-V-on-silicon multi-frequency lasers. , 2013, Optics express.

[59]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[60]  Jeffrey M. Shainline,et al.  Enhanced photoluminescence from nanopatterned carbon-rich silicon grown by solid-phase epitaxy , 2007 .

[61]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[62]  Di Liang,et al.  Hybrid silicon evanescent approach to optical interconnects , 2009 .

[63]  Yi Liang,et al.  Silicon photonics multicore transceivers , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[64]  J. Bowers,et al.  Hybrid Silicon Photonics for Optical Interconnects , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[65]  M. Amann,et al.  Dynamics of amplified spontaneous emission in InAs/GaAs quantum dots , 2000 .

[66]  N. Sugiyama,et al.  Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals , 1999 .

[67]  N. Koshida Device Applications of Silicon Nanocrystals and Nanostructures , 2009 .

[68]  Pallab Bhattacharya,et al.  High-Performance Quantum Dot Lasers and Integrated Optoelectronics on Si , 2009, Proceedings of the IEEE.

[69]  Di Liang,et al.  Reliability of Hybrid Silicon Distributed Feedback Lasers , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[70]  J. E. Bowers,et al.  Energy-Efficient Hybrid Silicon Electroabsorption Modulator for 40-Gb/s 1-V Uncooled Operation , 2012, IEEE Photonics Technology Letters.

[71]  A. Yariv,et al.  High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms , 2014, Proceedings of the National Academy of Sciences.

[72]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[73]  Y. Horikoshi,et al.  Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy , 1991 .

[74]  H. Choi,et al.  GaAs‐based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer , 1991 .

[75]  Jesse Lu,et al.  Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate. , 2009, Optics express.

[76]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[77]  Direct modulation of electroluminescence from silicon nanocrystals beyond radiative recombination rates , 2008 .

[78]  J. Bowers,et al.  Demonstration of Enhanced III-V-On-Silicon Hybrid Integration by Using a Strained Superlattice as a Defect Blocking Layer , 2010 .

[79]  J. Heitmann,et al.  Excitons in Si nanocrystals: Confinement and migration effects , 2004 .

[80]  John E. Bowers,et al.  Hybrid silicon modulators , 2009, OPTO.

[81]  G. Franzò,et al.  The excitation mechanism of rare-earth ions in silicon nanocrystals , 1999 .

[82]  Sebastian Lourdudoss,et al.  Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer , 2008 .

[83]  David Chapman,et al.  High-Quality 150 mm InP-to-Silicon Epitaxial Transfer for Silicon Photonic Integrated Circuits , 2009 .

[84]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.

[85]  J. Bowers,et al.  Hybrid Silicon Laser Technology: A Thermal Perspective , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[86]  K. Volz,et al.  Direct-band-gap Ga(NAsP)-material system pseudomorphically grown on GaP substrate , 2006 .

[87]  David J. Thomson,et al.  Hybrid III--V on Silicon Lasers for Photonic Integrated Circuits on Silicon , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[88]  F Y Gardes,et al.  40 Gb/s silicon photonics modulator for TE and TM polarisations. , 2011, Optics express.

[89]  Yimin Kang,et al.  Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product. , 2009, Optics express.

[90]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[91]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[92]  M. Yamaguchi,et al.  Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[93]  Yoshiaki Nakano,et al.  Dislocation-Free InGaAs on Si(111) Using Micro-Channel Selective-Area Metalorganic Vapor Phase Epitaxy , 2008 .

[94]  I. Crupi,et al.  Silicon-Based Light-Emitting Devices: Properties and Applications of Crystalline, Amorphous and Er-Doped Nanoclusters , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[95]  G. Roelkens,et al.  Hybrid III–V/Si Distributed-Feedback Laser Based on Adhesive Bonding , 2012, IEEE Photonics Technology Letters.

[96]  Di Liang,et al.  Device and Integration Technology for Silicon Photonic Transmitters , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  Larry A. Coldren,et al.  The world's first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[98]  U. Gösele,et al.  Light-emitting porous silicon☆ , 1995 .

[99]  H. Kawanami,et al.  Heteroepitaxial technologies of III-V on Si , 2001 .

[100]  Efraim Rotem,et al.  Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth. , 2007, Optics express.

[101]  J. Bowers,et al.  Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. , 2007, Optics express.

[102]  David Chapman,et al.  150 mm InP-to-Silicon Direct Wafer Bonding for Silicon Photonic Integrated Circuits , 2008 .

[103]  K. Hjort,et al.  Crystalline Defects in InP-to-Silicon Direct Wafer Bonding , 2001 .

[104]  J.W. Raring,et al.  40-Gb/s Widely Tunable Transceivers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[105]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[106]  T. Ueda,et al.  Method to Obtain Low-Dislocation-Density Regions by Patterning with SiO2 on GaAs/Si Followed by Annealing , 1994 .

[107]  Klas Hjort,et al.  Plasma-assisted InP-to-Si low temperature wafer bonding , 2002 .

[108]  Rajeev J. Ram,et al.  Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers , 2003 .

[109]  Nahum Izhaky,et al.  High-speed optical modulation based on carrier depletion in a silicon waveguide. , 2007, Optics express.

[110]  Gang Zhang,et al.  Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site , 2012, Scientific Reports.

[111]  S. Eisebitt,et al.  Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix , 2006 .

[112]  P. Werner,et al.  Room temperature electroluminescence from Ge/Si quantum dots superlattice close to 1.6 μm , 2003 .

[113]  Dimitrios Papadimitriou,et al.  ELECTROLUMINESCENT DEVICE BASED ON SILICON NANOPILLARS , 1996 .

[114]  Jinzhong Yu,et al.  Fabrication and optical optimization of spot-size converters with strong cladding layers , 2009 .

[115]  M. Umeno,et al.  Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition , 2001 .

[116]  Hyundai Park,et al.  Design and Fabrication of Optically Pumped Hybrid Silicon-AlGaInAs Evanescent Lasers , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[117]  Omri Raday,et al.  A hybrid AlGaInAs-silicon evanescent waveguide photodetector. , 2007, Optics express.

[118]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[119]  A. Hovinen,et al.  Fabrication of a silicon based electroluminescent device , 2000 .

[120]  Shinsuke Tanaka,et al.  High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. , 2012, Optics express.

[121]  K. Ohira,et al.  On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide. , 2010, Optics express.

[122]  A. Patz,et al.  Role of Oxygen , 1981 .

[123]  J. Bowers,et al.  Wafer fusion: materials issues and device results , 1997 .

[124]  Alexander Fang,et al.  Integrated Silicon Photonic Laser Sources for Telecom and Datacom , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[125]  L. D. Negro,et al.  Light amplification in silicon nanocrystals by pump and probe transmission measurements , 2004 .

[126]  Hyundai Park,et al.  1310nm Silicon Evanescent Laser , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[127]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[128]  Sanjay Krishna,et al.  Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates , 1999 .

[129]  Lionel C. Kimerling,et al.  Recombination enhanced defect reactions , 1978 .

[130]  H. Hatakeyama,et al.  Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps , 2001 .

[131]  David A B Miller,et al.  Optical modulator on silicon employing germanium quantum wells. , 2007, Optics express.

[132]  Taizo Masuda,et al.  InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001) , 2014 .

[133]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[134]  Alexander Fang,et al.  Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2005, Optics express.

[135]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[136]  Andrew Alduino,et al.  Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers , 2010, 2010 IEEE Hot Chips 22 Symposium (HCS).

[137]  Lorenzo Pavesi,et al.  Dynamics of stimulated emission in silicon nanocrystals , 2003 .

[138]  Urban Westergren,et al.  50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. , 2011, Optics express.

[139]  Di Liang,et al.  Low Threshold Electrically-Pumped Hybrid Silicon Microring Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[140]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[141]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[142]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[143]  John E. Bowers,et al.  Progress in hybrid-silicon photonic integrated circuit technology , 2013 .

[144]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[145]  David J. Thomson,et al.  Self-aligned silicon ring resonator optical modulator with focused ion beam error correction , 2013 .

[146]  Omri Raday,et al.  Low-threshold continuous-wave Raman silicon laser , 2007 .

[147]  Sangam Chatterjee,et al.  Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate , 2011 .

[148]  Gerald B. Stringfellow,et al.  Effect of mismatch strain on band gap in III‐V semiconductors , 1985 .

[149]  A high speed Mach-Zehnder silicon evanescent modulator using capacitively loaded traveling wave electrode , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[150]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[151]  Juthika Basak,et al.  Developments in Gigascale Silicon Optical Modulators Using Free Carrier Dispersion Mechanisms , 2008 .

[152]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[153]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[154]  Di Liang,et al.  A metal thermal shunt design for hybrid silicon microring laser , 2012, 2012 Optical Interconnects Conference.

[155]  Di Liang,et al.  Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. , 2009, Optics express.

[156]  Alwyn J. Seeds,et al.  1.3-mu m InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2011 .

[157]  N. Feng,et al.  Wavelength-tunable silicon microring modulator. , 2010, Optics express.

[158]  Di Liang,et al.  A Distributed Bragg Reflector Silicon Evanescent Laser , 2008, IEEE Photonics Technology Letters.

[159]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[160]  John E. Bowers,et al.  Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp. , 2011, Optics express.

[161]  Ying-Hao Kuo,et al.  A Hybrid Silicon–AlGaInAs Phase Modulator , 2008, IEEE Photonics Technology Letters.

[162]  L. Coldren,et al.  InP-based photonic integrated circuits , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[163]  L. D. Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[164]  J. Bowers,et al.  Widely tunable Vernier ring laser on hybrid silicon. , 2013, Optics express.

[165]  Salvatore Coffa,et al.  Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes , 1997 .

[166]  David T. D. Childs,et al.  Structural analysis of life tested 1.3 μm quantum dot lasers , 2008 .

[167]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[168]  Philippe Regreny,et al.  Improved design of an InP-based microdisk laser heterogeneously integrated with SOI , 2009, 2009 6th IEEE International Conference on Group IV Photonics.