Tracking objects with a recognition algorithm

In this paper, we propose an efficient method for tracking 3D modelled objects in cluttered scenes. Rather than tracking objects in the image, our approach relies on the object recognition aspect of tracking. Possible matches between image and model features define volumes within a transformation space. The model is best aligned with the image in volumes satisfying the greatest number of correspondences. Object motion defines a trajectory in the transformation space. We propose an efficient algorithm to compute these transformations.

[1]  Daniel DeMenthon De la vision artificielle à la réalité synthétique : système d'interaction avec un ordinateur utilisant l'analyse d'images vidéo. (From artificial vision to synthetic reality : system for interaction with a computer using video images analysis) , 1993 .

[2]  D. W. Thompson,et al.  Three-dimensional model matching from an unconstrained viewpoint , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[3]  Todd A. Cass,et al.  Polynomial-Time Object Recognition in the Presence of Clutter, Occlusion, and Uncertainty , 1992, ECCV.

[4]  George C. Stockman,et al.  Matching Images to Models for Registration and Object Detection via Clustering , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Thomas M. Breuel,et al.  Fast recognition using adaptive subdivisions of transformation space , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  W. Eric L. Grimson,et al.  On the Sensitivity of the Hough Transform for Object Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, ECCV.

[8]  Tieniu Tan,et al.  Pose Determination and Recognition of Vehicles in Traffic Scenes , 1994, ECCV.

[9]  Rachid Deriche,et al.  Tracking line segments , 1990, Image Vis. Comput..

[10]  Y. Bar-Shalom Tracking and data association , 1988 .

[11]  Todd A. Cass Feature matching for object localization in the presence of uncertainty , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[12]  Rama Chellappa,et al.  A new approach to image feature detection with applications , 1996, Pattern Recognit..

[13]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[14]  Frans C. A. Groen,et al.  3D object recognition from 2D images using geometric hashing , 1992, Pattern Recognit. Lett..

[15]  H. Baird Model-Based Image Matching Using Location , 1985 .

[16]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[17]  Daniel P. Huttenlocher,et al.  Measuring the Quality of Hypotheses in Model-Based Recognition , 1992, ECCV.