Deep learning in fluid dynamics

It was only a matter of time before deep neural networks (DNNs) – deep learning – made their mark in turbulence modelling, or more broadly, in the general area of high-dimensional, complex dynamical systems. In the last decade, DNNs have become a dominant data mining tool for big data applications. Although neural networks have been applied previously to complex fluid flows, the article featured here (Ling et al. , J. Fluid Mech. , vol. 807, 2016, pp. 155–166) is the first to apply a true DNN architecture, specifically to Reynolds averaged Navier Stokes turbulence models. As one often expects with modern DNNs, performance gains are achieved over competing state-of-the-art methods, suggesting that DNNs may play a critically enabling role in the future of modelling complex flows.