Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems

[1]  R. Amal,et al.  Solar hydrogen evolution using a CuGaS2 photocathode improved by incorporating reduced graphene oxide , 2015 .

[2]  Shaoming Huang,et al.  Fe2O3-Modified Porous BiVO4 Nanoplates with Enhanced Photocatalytic Activity , 2015 .

[3]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[4]  Sang Ho Lee,et al.  Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays. , 2014, ACS nano.

[5]  Xuejin Li,et al.  Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation , 2014 .

[6]  Junwang Tang,et al.  Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system. , 2014, Journal of the American Chemical Society.

[7]  Gunawan,et al.  Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting , 2014 .

[8]  Wei Chen,et al.  In situ photodeposition of NiOx on CdS for hydrogen production under visible light: Enhanced activity by controlling solution environment , 2014 .

[9]  Zhenhui Kang,et al.  3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. , 2014, ACS applied materials & interfaces.

[10]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[11]  Allen J. Bard,et al.  Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. , 2014, Journal of the American Chemical Society.

[12]  Mingfei Shao,et al.  Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting , 2014 .

[13]  Y. Zhou,et al.  Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation , 2013 .

[14]  Yan Sun,et al.  Three dimensional urchin-like ordered hollow TiO2/ZnO nanorods structure as efficient photoelectrochemical anode , 2013 .

[15]  Xiuwen Cheng,et al.  Preparation of CdS NCs decorated TiO2 nano-tubes arrays photoelectrode and its enhanced photoelectrocatalytic performance and mechanism , 2013 .

[16]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[17]  Xinbin Ma,et al.  Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. , 2013, Physical chemistry chemical physics : PCCP.

[18]  M. Misra,et al.  Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications , 2013, Materials.

[19]  K. Domen,et al.  Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation ☆ , 2013 .

[20]  A. Watanabe,et al.  Surface Texturing of TiO2 Film by Mist Deposition of TiO2 Nanoparticles , 2013 .

[21]  Wei Chen,et al.  In situ photodeposition of nickel oxides on CdS for highly efficient hydrogen production via visible-light-driven photocatalysis , 2013 .

[22]  Jun Kubota,et al.  Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. , 2013, Journal of the American Chemical Society.

[23]  T. Xie,et al.  Photoelectrochemical and Photovoltaic Properties of p–n Cu2O Homojunction Films and Their Photocatalytic Performance , 2013 .

[24]  M. Misra,et al.  Single-step anodization for synthesis of hierarchical TiO2 nanotube arrays on foil and wire substrate for enhanced photoelectrochemical water splitting , 2013 .

[25]  W. Shangguan,et al.  Hydrogen production from water splitting on CdS-based photocatalysts using solar light , 2013, Frontiers in Energy.

[26]  Yat Li,et al.  Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. , 2012, Nanoscale.

[27]  A. Kudo,et al.  Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation , 2012, Proceedings of the National Academy of Sciences.

[28]  Xien Liu,et al.  Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. , 2012, Physical chemistry chemical physics : PCCP.

[29]  Kazunari Domen,et al.  Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. , 2012, Journal of the American Chemical Society.

[30]  Kyoung-Shin Choi,et al.  Junction studies on electrochemically fabricated p-n Cu(2)O homojunction solar cells for efficiency enhancement. , 2012, Physical chemistry chemical physics : PCCP.

[31]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[32]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[33]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[34]  Kazunari Domen,et al.  Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation , 2011 .

[35]  Yichuan Ling,et al.  Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. , 2011, Nano letters.

[36]  Jiaguo Yu,et al.  Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. , 2011, Journal of the American Chemical Society.

[37]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[38]  W. Choi,et al.  Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2/WO3 through the Cascadal Electron Transfer , 2011 .

[39]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[40]  R. Amal,et al.  Synthesis of Porous and Visible-Light Absorbing Bi2WO6/TiO2 Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances , 2011 .

[41]  Nathan S Lewis,et al.  Photoelectrochemical hydrogen evolution using Si microwire arrays. , 2011, Journal of the American Chemical Society.

[42]  Yasumichi Matsumoto,et al.  Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. , 2010, Journal of the American Chemical Society.

[43]  S. Luo,et al.  High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. , 2010, Environmental science & technology.

[44]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[45]  Rose Amal,et al.  Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting , 2010 .

[46]  M. Zeller,et al.  Photoelectrochemical and photoresponsive properties of Bi2S3 nanotube and nanoparticle thin films , 2010 .

[47]  S. Kuwabata,et al.  Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films , 2010 .

[48]  W. R. Daud,et al.  An overview of photocells and photoreactors for photoelectrochemical water splitting , 2010 .

[49]  Makoto Konagai,et al.  Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film , 2010 .

[50]  Kazunari Domen,et al.  Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. , 2010, Journal of the American Chemical Society.

[51]  Jingjing Xu,et al.  Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays , 2010 .

[52]  Fang Qian,et al.  Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. , 2010, Nano letters.

[53]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[54]  Lianmao Peng,et al.  An Efficient Method To Form Heterojunction CdS/TiO2 Photoelectrodes Using Highly Ordered TiO2 Nanotube Array Films , 2009 .

[55]  Yat Li,et al.  Hydrogen generation from photoelectrochemical water splitting based on nanomaterials , 2009 .

[56]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[57]  Shuichi Nonomura,et al.  Efficient Solar Water Splitting with a Composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2” Semiconductor Electrode , 2009 .

[58]  Yiping Zhao,et al.  Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting , 2009 .

[59]  Fang Qian,et al.  Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. , 2009, Nano letters.

[60]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[61]  Huimin Zhao,et al.  Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity , 2008 .

[62]  H. Teng,et al.  Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3 , 2008 .

[63]  C. Grimes,et al.  Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays , 2008 .

[64]  Hsisheng Teng,et al.  Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination , 2008 .

[65]  Heli Wang,et al.  Direct Water Splitting under Visible Light with Nanostructured Hematite and WO3 Photoanodes and a GaInP2 Photocathode , 2008 .

[66]  Xinhu Tang,et al.  Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response , 2008 .

[67]  Yang Liu,et al.  Self‐Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand , 2008 .

[68]  R. M. Lambert,et al.  Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. , 2007, Journal of the American Chemical Society.

[69]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[70]  Nelson A. Kelly,et al.  Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting , 2006 .

[71]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[72]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[73]  J. Turner,et al.  Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting , 1998 .

[74]  M. Kuhn,et al.  Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .

[75]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[76]  Adam Heller,et al.  Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .

[77]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[78]  Wei Chen,et al.  Fe 2 O 3-Modified Porous BiVO 4 Nanoplates with Enhanced Photocatalytic Activity , 2015 .

[79]  Liejin Guo,et al.  Ag2S/CdS nanorod-array heterojunctions for efficient photoelectrochemical water splitting , 2013 .

[80]  Z. Su,et al.  Anodic formation of nanoporous and nanotubular metal oxides , 2012 .

[81]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[82]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[83]  Shang-sheng Wen Progress in Research of Hydrogen Production from Water on Photocat alysts with Solar Energy , 2001 .

[84]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .