Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand.

We demonstrate that symmetric or asymmetric gold nanoparticle dimers with substantial scattering cross sections and plasmon coupling can be produced with a perfectly controlled chemical environment and a high purity using a single DNA linker as short as 7 nm. A statistical analysis of the optical properties and morphology of single dimers is performed using darkfield and cryo-electron microscopies. These results, correlated to Mie theory calculations, indicate that the particle dimers are stretched in water by electrostatic interactions.

[1]  Nicolas Bonod,et al.  Multipole methods for nanoantennas design: applications to Yagi-Uda configurations , 2011 .

[2]  Jennifer I. L. Chen,et al.  Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. , 2010, Journal of the American Chemical Society.

[3]  P. Jain,et al.  Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. , 2010, Nano letters.

[4]  B. Reinhard,et al.  Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[5]  M. Atlan,et al.  Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy. , 2009, Optics express.

[6]  B. Reinhard,et al.  Monitoring Simultaneous Distance and Orientation Changes in Discrete Dimers of DNA Linked Gold Nanoparticles. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[7]  K. Hosokawa,et al.  Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. , 2009, Journal of the American Chemical Society.

[8]  S. Claridge,et al.  Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. , 2009, Journal of the American Chemical Society.

[9]  Ximei Qian,et al.  Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. , 2008, Journal of the American Chemical Society.

[10]  W. Smith,et al.  Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. , 2008, Nature nanotechnology.

[11]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[12]  A. Alivisatos,et al.  Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. , 2008, Nano letters.

[13]  Albert Polman,et al.  Plasmon-based nanolenses assembled on a well-defined DNA template. , 2008, Journal of the American Chemical Society.

[14]  J. Lakowicz,et al.  Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. , 2007, Nano letters.

[15]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[16]  Faisal A. Aldaye,et al.  Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. , 2007, Journal of the American Chemical Society.

[17]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[18]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[19]  A Paul Alivisatos,et al.  Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. , 2005, Nano letters.

[20]  Chengde Mao,et al.  DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. , 2005, Angewandte Chemie.

[21]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[22]  Huixiang Li,et al.  Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Christine M. Micheel,et al.  Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds , 2004 .

[24]  Huixiang Li,et al.  Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. , 2004, Journal of the American Chemical Society.

[25]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[26]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[27]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[28]  Christine M. Micheel,et al.  Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings , 2002 .

[29]  C. Mirkin,et al.  Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. , 2002, Nucleic acids research.

[30]  David A. Schultz,et al.  Single-target molecule detection with nonbleaching multicolor optical immunolabels. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[32]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[33]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[34]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[35]  J. Dubochet,et al.  Electron microscopy of frozen water and aqueous solutions , 1982 .

[36]  W. Wiscombe Improved Mie scattering algorithms. , 1980, Applied optics.

[37]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[38]  M. Lax Multiple Scattering of Waves , 1951 .

[39]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[40]  Björn M Reinhard,et al.  Spermidine modulated ribonuclease activity probed by RNA plasmon rulers. , 2008, Nano letters.

[41]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[42]  Christine M. Micheel,et al.  Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates , 2001 .