Adapting Generalization Tools to Physiographic Diversity for the United States National Hydrography Dataset

This paper reports on generalization and data modeling to create reduced scale versions of the National Hydrographic Dataset (NHD) for dissemination through The National Map, the primary data delivery portal for USGS. Our approach distinguishes local differences in physiographic factors, to demonstrate that knowledge about varying terrain (mountainous, hilly or flat) and varying climate (dry or humid) can support decisions about algorithms, parameters, and processing sequences to create generalized, smaller scale data versions which preserve distinct hydrographic patterns in these regions. We work with multiple subbasins of the NHD that provide a range of terrain and climate characteristics. Specifically tailored generalization sequences are used to create simplified versions of the high resolution data, which was compiled for 1:24,000 scale mapping. Results are evaluated cartographically and metrically against a medium resolution benchmark version compiled for 1:100,000, developing coefficients of linear and areal correspondence.

[1]  J. Gaffuri Outflow Preservation of the Hydrographic Network on the Relief in Map Generalisation , 2007 .

[2]  Jeffrey S. Torguson,et al.  Cartography , 2019, Dictionary of Geotourism.

[3]  Peter van Oosterom,et al.  The Development of an Interactive Multi-Scale GIS , 1995, Int. J. Geogr. Inf. Sci..

[4]  Joseph. Wood,et al.  The geomorphological characterisation of Digital Elevation Models , 1996 .

[5]  Barbara P. Buttenfield,et al.  Generalization of Hydrographic Features and Automated Metric Assessment Through Bootstrapping , 2010 .

[6]  Barbara P. Buttenfield,et al.  Multiscale Representations of Water: Tailoring Generalization Sequences to Specific Physiographic Regimes , 2010 .

[7]  Mike J. Smith,et al.  Surface Roughness of Topography: A Multi-Scale Analysis of Landform Elements in Midland Valley, Scotland , 2009 .

[8]  Robbie M. Andrew,et al.  Multi‐scale landform characterization , 2005 .

[9]  E. Lynn Usery,et al.  Assessment of a Rapid Approach for Estimating Catchment Areas for Surface Drainage Lines U.S. Geological Survey Center of Excellence for Geospatial Information Science 1400 Independence Road, Rolla Missouri, 65401 , 2007 .

[10]  C. Duchêne,et al.  First Thoughts for the Orchestration of Generalisation Methods on Heterogeneous Landscapes , 2008 .

[11]  William A. Mackaness,et al.  Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis , 2008, Trans. GIS.

[12]  D. Montgomery,et al.  Source areas, drainage density, and channel initiation , 1989 .

[13]  Terry A. Slocum,et al.  Thematic cartography and geovisualization, 3rd Edition , 2008 .

[14]  W. Mackaness,et al.  Partitioning Techniques to Make Manageable the Generalisation of National Spatial Datasets , 2008 .

[15]  Lawrence V. Stanislawski,et al.  Feature pruning by upstream drainage area to support automated generalization of the United States National Hydrography Dataset , 2009, Comput. Environ. Urban Syst..

[16]  F. Töpfer,et al.  The Principles of Selection , 1966 .

[17]  Barbara P. Buttenfield,et al.  The Fallacy of the "Golden Feature" in MRDBs: Data Modeling Versus Integrating New Anchor Data , 2006 .

[18]  Gregory J. McCabe,et al.  ESTIMATES OF RUNOFF USING WATER‐BALANCE AND ATMOSPHERIC GENERAL CIRCULATION MODELS 1 , 1999 .

[19]  C. W. Carlston,et al.  Drainage density and streamflow , 1963 .

[21]  Jo Wood,et al.  Where is Helvellyn? Fuzziness of multi‐scale landscape morphometry , 2004 .

[22]  Mario A. Gomarasca,et al.  Elements of Cartography , 2009 .

[23]  R. Weibel,et al.  Multi-representation Databases with Explicitly Modeled Horizontal, Vertical, and Update Relations , 2008 .

[24]  Robert Weibel,et al.  Improving Automated Generalisation for On- Demand Web Mapping by Multiscale Databases , 2002 .

[25]  N. M. Fenneman,et al.  Physical divisions of the United States , 1946 .

[26]  Y. Deng,et al.  New trends in digital terrain analysis: landform definition, representation, and classification , 2007 .

[27]  Gregory E. Tucker,et al.  Hillslope processes, drainage density, and landscape morphology , 1998 .

[28]  Barbara P. Buttenfield,et al.  Automated Delineation of Stream Centerlines for the USGS National Hydrography Dataset , 2011 .

[29]  Terry A. Slocum Thematic Cartography and Visualization , 1998 .

[30]  Barbara P. Buttenfield,et al.  EVALUATING GENERALIZATIONS OF HYDROGRAPHY IN DIFFERING TERRAINS FOR THE NATIONAL MAP OF THE UNITED STATES , 2009 .

[31]  David G. Tarboton,et al.  A Physical Basis for Drainage Density , 1992 .

[32]  William A. Mackaness,et al.  Automatic identification of urban settlement boundaries for multiple representation databases , 2008, Comput. Environ. Urban Syst..

[33]  John Krumm,et al.  Detecting Road Intersections from GPS Traces , 2010, GIScience.