Fast Robust Eigen-Background Updating for Foreground Detection

A fast robust eigen-background update algorithm is proposed for foreground object detection. The update procedure involves no eigen decomposition, thus faster than former eigen-background based algorithms. Meanwhile, the algorithm can robustly maintain the desired background model, resistant to outlying objects.

[1]  C. Jennison,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[2]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[3]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[4]  James Orwell,et al.  Adaptive eigen-backgrounds for object detection , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[5]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[6]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[7]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Danijel Skocaj,et al.  Weighted and robust incremental method for subspace learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[10]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[11]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.