In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires

Growth of GaAs and In(x)Ga(1-x)As nanowires by the group-III assisted molecular beam epitaxy growth method on (001)GaAs/SiO(2) substrates is studied in dependence on growth temperature, with the objective of maximizing the indium incorporation. Nanowire growth was achieved for growth temperatures as low as 550 °C. The incorporation of indium was studied by low temperature micro-photoluminescence spectroscopy, Raman spectroscopy and electron energy loss spectroscopy. The results show that the incorporation of indium achieved by lowering the growth temperature does not have the effect of increasing the indium concentration in the bulk of the nanowire, which is limited to 3-5%. For growth temperatures below 575 °C, indium rich regions form at the surface of the nanowires as a consequence of the radial growth. This results in the formation of quantum dots, which exhibit spectrally narrow luminescence.

[1]  J. Gilman,et al.  Nanotechnology , 2001 .

[2]  Charles M Lieber,et al.  Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Lars Samuelson,et al.  Sharp exciton emission from single InAs quantum dots in GaAs nanowires , 2003 .

[4]  Z. R. Wasilewski,et al.  Size and shape engineering of vertically stacked self-assembled quantum dots , 1999 .

[5]  G. Lucovsky,et al.  Infrared Reflection Spectra ofGa1−xInxAs: A New Type of Mixed-Crystal Behavior , 1968 .

[6]  Jan Muszalski,et al.  The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods , 2009 .

[7]  N. Tanaka,et al.  Junctions in axial III-V heterostructure nanowires obtained via an interchange of group III elements. , 2009, Nano letters.

[8]  K. Dick,et al.  Gold-free growth of GaAs nanowires on silicon: arrays and polytypism , 2010, Nanotechnology.

[9]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[10]  H. Tan,et al.  Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures , 2008 .

[11]  Brunner,et al.  Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. , 1994, Physical review letters.

[12]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[13]  J. Morante,et al.  Catalyst-free nanowires with axial InxGa1−xAs/GaAs heterostructures , 2009, Nanotechnology.

[14]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[15]  G. Abstreiter,et al.  Growth mechanisms and optical properties of GaAs-based semiconductor microstructures by selective area epitaxy , 2008 .

[16]  J. Morante,et al.  InAs quantum dot arrays decorating the facets of GaAs nanowires. , 2010, ACS nano.

[17]  R. LaPierre,et al.  InGaAs/InP core–shell and axial heterostructure nanowires , 2007 .

[18]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[19]  Manijeh Razeghi,et al.  Optical and crystallographic properties and impurity incorporation of GaxIn1−xAs (0.44 , 1983 .

[20]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[21]  Jordi Arbiol,et al.  Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires , 2008 .

[22]  V. Grillo,et al.  Room temperature luminescent InGaAs/GaAs core-shell nanowires , 2008 .

[23]  Lars Samuelson,et al.  The morphology of axial and branched nanowire heterostructures. , 2007, Nano letters.

[24]  Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: Polarization dependence, selection rules, and strain effects , 2009, 0910.5266.

[25]  C. Chatillon,et al.  Thermodynamic calculations of congruent vaporization in III-V systems ; applications to the In-As, Ga-As and Ga-In-As systems , 1990 .

[26]  T. Fukui,et al.  Growth of InGaAs nanowires by selective-area metalorganic vapor phase epitaxy , 2008 .

[27]  P. Yu,et al.  Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition , 2005 .

[28]  T. Kuech,et al.  Growth of size and density controlled GaAs/InxGa1−xAs/GaAs (x=0.10) nanowires on anodic alumina membrane-assisted etching of nanopatterned GaAs , 2010 .

[29]  Lars Samuelson,et al.  Semiconductor nanowires for novel one-dimensional devices , 2004 .

[30]  H. Ruda,et al.  Self-assembled InAs quantum dots and wires grown on a cleaved-edge GaAs(110) surface , 2006 .

[31]  M. Koguchi,et al.  Heteroepitaxial ultrafine wire‐like growth of InAs on GaAs substrates , 1991 .

[32]  M. Kaniber,et al.  Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures , 2009 .

[33]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[34]  F. Jabeen,et al.  Growth of III-V semiconductor nanowires by molecular beam epitaxy , 2009, Microelectron. J..

[35]  J-P Zhang,et al.  Self-induced growth of vertical free-standing InAs nanowires on Si(111) by molecular beam epitaxy , 2010, Nanotechnology.

[36]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.