The sensory thalamus and visual midbrain in mouse lemurs

Mouse lemurs are the smallest of extant primates and are thought to resemble early primates in many ways. We provide histological descriptions of the major sensory nuclei of the dorsal thalamus and the superior colliculus (SC) of mouse lemurs (Microcebus murinus). The dorsal lateral geniculate nucleus has the six layers typical of strepsirrhine primates, with matching pairs of magnocellular, parvocellular, and koniocellular layers, one of each pair for each eye. Unlike most primates, magnocellular and parvocellular layers exhibit only small differences in cell size. All layers express vesicular glutamate transporter 2 (VGLUT2), reflecting terminations of retinal inputs, and the expression of VGLUT2 is much less dense in the koniocellular layers. Parvalbumin is densely expressed in all layers, while SMI‐32 is densely expressed only in the magnocellular layers. The adjoining pulvinar complex has a posterior nucleus with strong VGLUT2 expression, reflecting terminations from the SC. The SC is laminated with dense expression of VGLUT2 in the upper superficial gray layer, reflecting terminations from the retina. The ventral (MGNv), medial, and dorsal divisions of the medial geniculate complex are only moderately differentiated, although patches of dense VGLUT2 expression are found along the outer border of MGNv. The ventroposterior nucleus has darkly stained cells in Nissl stained sections, and narrow septa separating patchy regions of dense VGLUT2 expression that likely represent different body parts. Overall, these structures resemble those in other strepsirrhine primates, although they are smaller, with the sensory nuclei appearing to occupy proportionately more of the dorsal thalamus than in larger primates.

[1]  J. Kaas,et al.  Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs , 2019, The Journal of comparative neurology.

[2]  J. Kaas,et al.  Cortical projections to the two retinotopic maps of primate pulvinar are distinct , 2018, The Journal of comparative neurology.

[3]  Jon H Kaas,et al.  The evolution and functions of nuclei of the visual pulvinar in primates , 2017, The Journal of comparative neurology.

[4]  A. Yoder,et al.  Species discovery and validation in a cryptic radiation of endangered primates: coalescent‐based species delimitation in Madagascar's mouse lemurs , 2016, Molecular ecology.

[5]  J. Kaas,et al.  Subcortical barrelette-like and barreloid-like structures in the prosimian galago (Otolemur garnetti) , 2015, Proceedings of the National Academy of Sciences.

[6]  Jon H Kaas,et al.  Projections of the superior colliculus to the pulvinar in prosimian galagos (Otolemur garnettii) and VGLUT2 staining of the visual pulvinar , 2013, The Journal of comparative neurology.

[7]  J. Kaas,et al.  Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system , 2013, Journal of Chemical Neuroanatomy.

[8]  J. Kaas,et al.  Cortical projections to the superior colliculus in prosimian galagos (Otolemur garnetti) , 2012, The Journal of comparative neurology.

[9]  Troy A. Hackett,et al.  VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway , 2011, Hearing Research.

[10]  J. Kaas,et al.  VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). , 2011, Eye and brain.

[11]  Hui-Xin Qi,et al.  Cell‐poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos , 2011, The Journal of comparative neurology.

[12]  J. Kaas,et al.  Architectonic Subdivisions of Neocortex in the Galago (Otolemur garnetti) , 2010, Anatomical record.

[13]  J. Kaas,et al.  Overview of Sensory Systems of Tarsius , 2010, International Journal of Primatology.

[14]  J. Kaas,et al.  Cortical connections of the visual pulvinar complex in prosimian galagos (Otolemur garnetti) , 2009, The Journal of comparative neurology.

[15]  Troy A. Hackett,et al.  Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex , 2009, Journal of Chemical Neuroanatomy.

[16]  W. E. Clark 23. The Brain of Microcebus murinus. , 2009 .

[17]  Jon H Kaas,et al.  Architectonic Subdivisions of Neocortex in the Tree Shrew (Tupaia belangeri) , 2009, Anatomical record.

[18]  H. Willard,et al.  Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar's lemurs. , 2008, Genome research.

[19]  Lisa A. de la Mothe,et al.  Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[20]  J. Kaas,et al.  Overview of the visual system of Tarsius. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[21]  S. Shimojo,et al.  Parcellation and Area-Area Connectivity as a Function of Neocortex Size , 2005, Brain, Behavior and Evolution.

[22]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[23]  Kazuo Itoh,et al.  Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat , 2004, The Journal of comparative neurology.

[24]  Iwona Stepniewska,et al.  Somatosensory input to the ventrolateral thalamic region in the macaque monkey: A potential substrate for parkinsonian tremor , 2003, The Journal of comparative neurology.

[25]  P. Kappeler Lemur Origins: Rafting by Groups of Hibernators? , 2000, Folia Primatologica.

[26]  Jon H. Kaas,et al.  Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .

[27]  J. Kaas,et al.  Thalamocortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[28]  D. Albe-Fessard,et al.  A stereotaxic atlas of the grey lesser mouse lemur brain (Microcebus murinus) , 1998, Brain Research Bulletin.

[29]  B. Dreher,et al.  Spatiotemporal patterns of ontogenetic expression of parvalbumin in the superior colliculi of rats and rabbits , 1998, The Journal of comparative neurology.

[30]  M. Ruvolo,et al.  Ancient single origin for Malagasy primates. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Casagrande,et al.  Distribution of calcium‐binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus) , 1995, The Journal of comparative neurology.

[32]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[33]  V. Casagrande A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.

[34]  J. Allman,et al.  Laminar organization of acetylcholinesterase and cytochrome oxidase in the lateral geniculate nucleus of prosimians , 1993, Neuroscience.

[35]  D. Fitzpatrick,et al.  Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri). , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. K. Harting,et al.  Ultrastructural studies of retinal, visual cortical (area 17), and parabigeminal terminals within the superior colliculus of Galago crassicaudatus , 1992, The Journal of comparative neurology.

[37]  J. Tigges,et al.  Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation , 1991, Visual Neuroscience.

[38]  E. Rausell,et al.  Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  S. Cachel Primate adaptation and evolution , 1989, International Journal of Primatology.

[40]  V. Casagrande,et al.  Development of primate retinogeniculate axon arbors , 1988, Visual Neuroscience.

[41]  D. Haines,et al.  Somatosensory thalamus of a prosimian primate (Galago senegalensis). I. Configuration of nuclei and termination of spinothalamic fibers , 1980, The Journal of comparative neurology.

[42]  J. Kaas,et al.  Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus , 1979, The Journal of comparative neurology.

[43]  H. Kennedy,et al.  Thalamic projections to area 17 in a prosimian primate, Microcebus murinus , 1979, The Journal of comparative neurology.

[44]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[45]  J. Kaas,et al.  The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase , 1978, The Journal of comparative neurology.

[46]  J. Kaas,et al.  Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.

[47]  J. Kaas,et al.  Connections of striate cortex in the prosimian, galago senegalensis , 1978, The Journal of comparative neurology.

[48]  H. Loos Barreloids in mouse somatosensory thalamus , 1976, Neuroscience Letters.

[49]  W. Welker Principles of Organization of the Ventrobasal Complex in Mammals; pp. 253–269 , 1973 .

[50]  J. Tigges,et al.  The retinofugal fibers and their terminal nuclei in Galago crassicaudatus (primates) , 1970, The Journal of comparative neurology.

[51]  K. Niimi,et al.  The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals , 1963, The Journal of comparative neurology.

[52]  W. E. Clark,et al.  A MORPHOLOGICAL STUDY OF THE LATERAL GENICULATE BODY , 1932, The British journal of ophthalmology.

[53]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[54]  Jon H. Kaas,et al.  Chapter 24 – Somatosensory System , 2015 .

[55]  Jon H. Kaas,et al.  Chapter 30 – Somatosensory System , 2012 .

[56]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[57]  D. Gebo A shrew-sized origin for primates. , 2004, American journal of physical anthropology.

[58]  R. Martin Primate origins and evolution , 1990 .

[59]  H. Frahm,et al.  Comparison of brain structure volumes in Insectivora and primates. VII. Amygdaloid components. , 1987, Journal fur Hirnforschung.

[60]  H. Frahm,et al.  Comparison of brain structure volumes in insectivora and primates. IV. Non-cortical visual structures. , 1984, Journal fur Hirnforschung.

[61]  K Zilles,et al.  A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. , 1980, Anatomy and embryology.

[62]  D. Albe-Fessard,et al.  The Somatosensory system , 1975 .

[63]  W I Welker,et al.  Principles of organization of the ventrobasal complex in mammals. , 1973, Brain, behavior and evolution.

[64]  R W Guillery,et al.  Some principles of organization in the dorsal lateral geniculate nucleus. , 1972, Brain, behavior and evolution.

[65]  R. Hassler Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .