The sensory thalamus and visual midbrain in mouse lemurs
暂无分享,去创建一个
J. Kaas | H. Kennedy | F. Pifferi | P. Balaram | Mansi Saraf
[1] J. Kaas,et al. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs , 2019, The Journal of comparative neurology.
[2] J. Kaas,et al. Cortical projections to the two retinotopic maps of primate pulvinar are distinct , 2018, The Journal of comparative neurology.
[3] Jon H Kaas,et al. The evolution and functions of nuclei of the visual pulvinar in primates , 2017, The Journal of comparative neurology.
[4] A. Yoder,et al. Species discovery and validation in a cryptic radiation of endangered primates: coalescent‐based species delimitation in Madagascar's mouse lemurs , 2016, Molecular ecology.
[5] J. Kaas,et al. Subcortical barrelette-like and barreloid-like structures in the prosimian galago (Otolemur garnetti) , 2015, Proceedings of the National Academy of Sciences.
[6] Jon H Kaas,et al. Projections of the superior colliculus to the pulvinar in prosimian galagos (Otolemur garnettii) and VGLUT2 staining of the visual pulvinar , 2013, The Journal of comparative neurology.
[7] J. Kaas,et al. Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system , 2013, Journal of Chemical Neuroanatomy.
[8] J. Kaas,et al. Cortical projections to the superior colliculus in prosimian galagos (Otolemur garnetti) , 2012, The Journal of comparative neurology.
[9] Troy A. Hackett,et al. VGLUT1 and VGLUT2 mRNA expression in the primate auditory pathway , 2011, Hearing Research.
[10] J. Kaas,et al. VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). , 2011, Eye and brain.
[11] Hui-Xin Qi,et al. Cell‐poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos , 2011, The Journal of comparative neurology.
[12] J. Kaas,et al. Architectonic Subdivisions of Neocortex in the Galago (Otolemur garnetti) , 2010, Anatomical record.
[13] J. Kaas,et al. Overview of Sensory Systems of Tarsius , 2010, International Journal of Primatology.
[14] J. Kaas,et al. Cortical connections of the visual pulvinar complex in prosimian galagos (Otolemur garnetti) , 2009, The Journal of comparative neurology.
[15] Troy A. Hackett,et al. Regional and laminar distribution of the vesicular glutamate transporter, VGluT2, in the macaque monkey auditory cortex , 2009, Journal of Chemical Neuroanatomy.
[16] W. E. Clark. 23. The Brain of Microcebus murinus. , 2009 .
[17] Jon H Kaas,et al. Architectonic Subdivisions of Neocortex in the Tree Shrew (Tupaia belangeri) , 2009, Anatomical record.
[18] H. Willard,et al. Development and application of a phylogenomic toolkit: resolving the evolutionary history of Madagascar's lemurs. , 2008, Genome research.
[19] Lisa A. de la Mothe,et al. Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.
[20] J. Kaas,et al. Overview of the visual system of Tarsius. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.
[21] S. Shimojo,et al. Parcellation and Area-Area Connectivity as a Function of Neocortex Size , 2005, Brain, Behavior and Evolution.
[22] H. Markram,et al. Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.
[23] Kazuo Itoh,et al. Cytoarchitectonic and connectional organization of the ventral lateral geniculate nucleus in the cat , 2004, The Journal of comparative neurology.
[24] Iwona Stepniewska,et al. Somatosensory input to the ventrolateral thalamic region in the macaque monkey: A potential substrate for parkinsonian tremor , 2003, The Journal of comparative neurology.
[25] P. Kappeler. Lemur Origins: Rafting by Groups of Hibernators? , 2000, Folia Primatologica.
[26] Jon H. Kaas,et al. Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .
[27] J. Kaas,et al. Thalamocortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.
[28] D. Albe-Fessard,et al. A stereotaxic atlas of the grey lesser mouse lemur brain (Microcebus murinus) , 1998, Brain Research Bulletin.
[29] B. Dreher,et al. Spatiotemporal patterns of ontogenetic expression of parvalbumin in the superior colliculi of rats and rabbits , 1998, The Journal of comparative neurology.
[30] M. Ruvolo,et al. Ancient single origin for Malagasy primates. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[31] V. Casagrande,et al. Distribution of calcium‐binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus) , 1995, The Journal of comparative neurology.
[32] J. Morrison,et al. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.
[33] V. Casagrande. A third parallel visual pathway to primate area V1 , 1994, Trends in Neurosciences.
[34] J. Allman,et al. Laminar organization of acetylcholinesterase and cytochrome oxidase in the lateral geniculate nucleus of prosimians , 1993, Neuroscience.
[35] D. Fitzpatrick,et al. Calcium binding proteins distinguish large and small cells of the ventral posterior and lateral geniculate nuclei of the prosimian galago and the tree shrew (Tupaia belangeri). , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[36] J. K. Harting,et al. Ultrastructural studies of retinal, visual cortical (area 17), and parabigeminal terminals within the superior colliculus of Galago crassicaudatus , 1992, The Journal of comparative neurology.
[37] J. Tigges,et al. Parvalbumin immunoreactivity of the lateral geniculate nucleus in adult rhesus monkeys after monocular eye enucleation , 1991, Visual Neuroscience.
[38] E. Rausell,et al. Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[39] S. Cachel. Primate adaptation and evolution , 1989, International Journal of Primatology.
[40] V. Casagrande,et al. Development of primate retinogeniculate axon arbors , 1988, Visual Neuroscience.
[41] D. Haines,et al. Somatosensory thalamus of a prosimian primate (Galago senegalensis). I. Configuration of nuclei and termination of spinothalamic fibers , 1980, The Journal of comparative neurology.
[42] J. Kaas,et al. Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus , 1979, The Journal of comparative neurology.
[43] H. Kennedy,et al. Thalamic projections to area 17 in a prosimian primate, Microcebus murinus , 1979, The Journal of comparative neurology.
[44] M. Wong-Riley. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.
[45] J. Kaas,et al. The identification of relay neurons in the dorsal lateral geniculate nucleus of monkeys using horseradish peroxidase , 1978, The Journal of comparative neurology.
[46] J. Kaas,et al. Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates , 1978, The Journal of comparative neurology.
[47] J. Kaas,et al. Connections of striate cortex in the prosimian, galago senegalensis , 1978, The Journal of comparative neurology.
[48] H. Loos. Barreloids in mouse somatosensory thalamus , 1976, Neuroscience Letters.
[49] W. Welker. Principles of Organization of the Ventrobasal Complex in Mammals; pp. 253–269 , 1973 .
[50] J. Tigges,et al. The retinofugal fibers and their terminal nuclei in Galago crassicaudatus (primates) , 1970, The Journal of comparative neurology.
[51] K. Niimi,et al. The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals , 1963, The Journal of comparative neurology.
[52] W. E. Clark,et al. A MORPHOLOGICAL STUDY OF THE LATERAL GENICULATE BODY , 1932, The British journal of ophthalmology.
[53] G Mann,et al. ON THE THALAMUS * , 1905, British medical journal.
[54] Jon H. Kaas,et al. Chapter 24 – Somatosensory System , 2015 .
[55] Jon H. Kaas,et al. Chapter 30 – Somatosensory System , 2012 .
[56] P. May. The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.
[57] D. Gebo. A shrew-sized origin for primates. , 2004, American journal of physical anthropology.
[58] R. Martin. Primate origins and evolution , 1990 .
[59] H. Frahm,et al. Comparison of brain structure volumes in Insectivora and primates. VII. Amygdaloid components. , 1987, Journal fur Hirnforschung.
[60] H. Frahm,et al. Comparison of brain structure volumes in insectivora and primates. IV. Non-cortical visual structures. , 1984, Journal fur Hirnforschung.
[61] K Zilles,et al. A quantitative approach to cytoarchitectonics. VI. The areal pattern of the cortex of the albino rat. , 1980, Anatomy and embryology.
[62] D. Albe-Fessard,et al. The Somatosensory system , 1975 .
[63] W I Welker,et al. Principles of organization of the ventrobasal complex in mammals. , 1973, Brain, behavior and evolution.
[64] R W Guillery,et al. Some principles of organization in the dorsal lateral geniculate nucleus. , 1972, Brain, behavior and evolution.
[65] R. Hassler. Comparative Anatomy of the Central Visual Systems in Day- and Night-active Primates , 1966 .