Joining Gödel and Zadeh Fuzzy Logics in Fuzzy Description Logics

Ontologies have succeeded as a knowledge representation formalism in many domains of application. Nevertheless, they are not suitable to represent vague or imprecise information. To overcome this limitation, several extensions to classical ontologies based on fuzzy logic have been proposed. Even though different fuzzy logics lead to fuzzy ontologies with very different logical properties, the combined use of different fuzzy logics has received little attention to date. This paper proposes a fuzzy extension of the Description Logic — the logic behind the ontology language OWL 2 — that joins Godel and Zadeh fuzzy logics. We analyze the properties of the new fuzzy Description Logic in order to provide guidelines to ontology developers to exploit the best features of each fuzzy logic. The proposal also considers degrees of truth belonging to a finite set of linguistic terms rather than numerical values, thus being closer to real experts' reasonings. We prove the decidability of the combined logic by presenting a reasoning preserving procedure to obtain a crisp representation for it. This result is generalized to offer a similar reduction that can be applied when any other finite t-norms, t-conorms, negations or implications are considered in the logic.

[1]  Michael G. Strintzis,et al.  Applying Fuzzy DLs in the Extraction of Image Semantics , 2009, J. Data Semant..

[2]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[3]  Michael G. Strintzis,et al.  Investigating fuzzy DLs-based reasoning in semantic image analysis , 2010, Multimedia Tools and Applications.

[4]  Troels Andreasen,et al.  Perspectives on ontology‐based querying , 2007, Int. J. Intell. Syst..

[5]  Giorgos Stoilos,et al.  Extending Fuzzy Description Logics for the Semantic Web , 2007, OWLED.

[6]  Thomas Lukasiewicz Uncertainty Representation and Reasoning in the Semantic Web , 2008 .

[7]  Baowen Xu,et al.  Reasoning Technique for Extended Fuzzy ALCQ , 2006, ICCSA.

[8]  Umberto Straccia,et al.  Reasoning with the finitely many-valued Lukasiewicz fuzzy Description Logic SROIQ , 2011, Inf. Sci..

[9]  Fernando Bobillo,et al.  DeLorean: A reasoner for fuzzy OWL 2 , 2012, Expert Syst. Appl..

[10]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[11]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[12]  Umberto Straccia,et al.  Finite Fuzzy Description Logics: A Crisp Representation for Finite Fuzzy ALCH , 2010, URSW.

[13]  Fernando Bobillo,et al.  A semantic fuzzy expert system for a fuzzy balanced scorecard , 2009, Expert Syst. Appl..

[14]  Elie Sanchez,et al.  Object-fuzzy concept network: An enrichment of ontologies in semantic information retrieval , 2008 .

[15]  Stasinos Konstantopoulos,et al.  Fuzzy-DL Reasoning over Unknown Fuzzy Degrees , 2007, OTM Workshops.

[16]  Umberto Straccia,et al.  Fuzzy Ontology Representation using OWL 2 , 2010, Int. J. Approx. Reason..

[17]  Fernando Bobillo,et al.  Crisp Representations and Reasoning for Fuzzy Ontologies , 2009, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[18]  Ian Horrocks,et al.  Description Logics as Ontology Languages for the Semantic Web , 2005, Mechanizing Mathematical Reasoning.

[19]  Garima Gupta,et al.  A Survey on Cloud Security Issues and Techniques , 2014, RCIS 2014.

[20]  Umberto Straccia,et al.  A fuzzy description logic for the semantic web , 2006, Fuzzy Logic and the Semantic Web.

[21]  Joan Torrens,et al.  S-implications and R-implications on a finite chain , 2004, Kybernetika.

[22]  Umberto Straccia,et al.  Description Logics over Lattices , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[23]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[24]  Stefanos D. Kollias,et al.  Image indexing and retrieval using expressive fuzzy description logics , 2008, Signal Image Video Process..

[25]  Rafael Peñaloza,et al.  GCIs Make Reasoning in Fuzzy DL with the Product T-norm Undecidable , 2011, Description Logics.

[26]  Siu Cheung Hui,et al.  Automatic fuzzy ontology generation for semantic Web , 2006, IEEE Transactions on Knowledge and Data Engineering.

[27]  Boris Motik,et al.  OWL 2: The next step for OWL , 2008, J. Web Semant..

[28]  John Yen,et al.  Generalizing Term Subsumption Languages to Fuzzy Logic , 1991, IJCAI.

[29]  Rafael Peñaloza,et al.  On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm , 2011, FroCoS.

[30]  Umberto Straccia,et al.  Mixed Integer Programming, General Concept Inclusions and Fuzzy Description Logics , 2007, EUSFLAT Conf..

[31]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[32]  Rafael Peñaloza,et al.  Undecidability of Fuzzy Description Logics , 2012, KR.

[33]  Umberto Straccia,et al.  Managing uncertainty and vagueness in description logics for the Semantic Web , 2008, J. Web Semant..

[34]  Umberto Straccia,et al.  Fuzzy description logics with general t-norms and datatypes , 2009, Fuzzy Sets Syst..

[35]  Ju Wang,et al.  Expressive fuzzy description logics over lattices , 2010, Knowl. Based Syst..

[36]  Marco Cerami,et al.  From classical Description Logic to n-graded Fuzzy Description Logic , 2010, International Conference on Fuzzy Systems.

[37]  Siu Cheung Hui,et al.  Automatic fuzzy ontology generation for semantic help-desk support , 2006, IEEE Transactions on Industrial Informatics.

[38]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[39]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[40]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[41]  Umberto Straccia,et al.  Description Logics with Fuzzy Concrete Domains , 2005, UAI.

[42]  Chang-Shing Lee,et al.  A fuzzy ontology and its application to news summarization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Silvia Calegari,et al.  Fuzzy Ontology and Fuzzy-OWL in the KAON Project , 2007, 2007 IEEE International Fuzzy Systems Conference.

[44]  Stefanos D. Kollias,et al.  Semantic Classification of Byzantine Icons , 2009, IEEE Intelligent Systems.

[45]  Baowen Xu,et al.  A Family of Extended Fuzzy Description Logics , 2005, COMPSAC.

[46]  Umberto Straccia,et al.  Transforming Fuzzy Description Logics into Classical Description Logics , 2004, JELIA.

[47]  Baowen Xu,et al.  A family of extended fuzzy description logics , 2005, 29th Annual International Computer Software and Applications Conference (COMPSAC'05).

[48]  Baowen Xu,et al.  Two Reasoning Methods for Extended Fuzzy ALCH , 2005, OTM Conferences.

[49]  Thomas R. Gruber,et al.  A Translation Approach to Portable Ontologies , 1993 .

[50]  Michael G. Strintzis,et al.  Enquiring MPEG-7 based multimedia ontologies , 2009, Multimedia Tools and Applications.

[51]  Umberto Straccia,et al.  fuzzyDL: An expressive fuzzy description logic reasoner , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[52]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[53]  Isabelle Bloch,et al.  Fuzzy spatial relation ontology for image interpretation , 2008, Fuzzy Sets Syst..

[54]  Hashim Habiballa Resolution Strategies for Fuzzy Description Logic , 2007, EUSFLAT Conf..

[55]  Umberto Straccia,et al.  On the Undecidability of Fuzzy Description Logics with GCIs with Lukasiewicz t-norm , 2011, ArXiv.

[56]  Trevor P Martin Fuzzy Logic and the Semantic Web , 2005, Capturing Intelligence.

[57]  Didier Dubois,et al.  Possibilistic uncertainty and fuzzy features in description logic. A preliminary discussion , 2006, Fuzzy Logic and the Semantic Web.

[58]  Elie Sanchez,et al.  Fuzzy Logic and the Semantic Web (Capturing Intelligence) , 2006 .