Multiple glass transitions in vapor-deposited orientational glasses of the most fragile plastic crystal Freon 113.

We investigate by fast-scanning nanocalorimetry the formation of Freon 113 films from the vapor phase at deposition temperatures ranging from 50 to 120 K, that is, spanning above and below the transition temperature of the glassy crystal to the plastic crystal (Tgc = 72 K). Analysis of the heat capacity curves indicates that vapor deposition at T < Tgc of the highly fragile Freon 113 yields structural and orientational glasses in the as-deposited state depending on the temperature range of deposition. Interestingly, growing above Tgc produces plastic crystals with a conformational ratio C1/Cs that changes with Tdep above and below 110-120 K, the temperature at which previous works have identified the arrest of the transformations between the C1 and Cs conformers.

[1]  A. Drobyshev,et al.  IR Studies of Thermally Stimulated Structural Phase Transformations in Cryovacuum Condensates of Freon 134a , 2018 .

[2]  Kenneth L. Kearns,et al.  Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus. , 2017, The Journal of chemical physics.

[3]  M. Ramos,et al.  Thermodynamic and Kinetic Fragility of Freon 113: The Most Fragile Plastic Crystal. , 2017, Physical review letters.

[4]  C. Schick,et al.  Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. , 2016, The Journal of chemical physics.

[5]  C. Schick,et al.  Glass transition and stable glass formation of tetrachloromethane. , 2016, The Journal of chemical physics.

[6]  J. Rodríguez-Viejo,et al.  Relaxation dynamics of glasses along a wide stability and temperature range , 2016, Scientific Reports.

[7]  M. Ramos,et al.  Thermal properties of halogen-ethane glassy crystals: Effects of orientational disorder and the role of internal molecular degrees of freedom. , 2015, The Journal of chemical physics.

[8]  J. Rodríguez-Viejo,et al.  Highly stable glasses of celecoxib: Influence on thermo-kinetic properties, microstructure and response towards crystal growth , 2015 .

[9]  A. Drobyshev,et al.  Transformation of cryovacuum condensates of ethanol near the glass transition temperature , 2013 .

[10]  D. Mondieig,et al.  Conformational polymorphism: The missing phase of 1,1,2,2-tetrachloroethane (Cl2HC-CHCl2) , 2013 .

[11]  D. Mondieig,et al.  Polymorphism in Halogen–Ethane Derivatives: CCl3–CF2Cl and CF3–CF2Cl , 2012 .

[12]  Francisco Javier Bermejo,et al.  Interplay between intramolecular and intermolecular structures of 1,1,2,2-tetrachloro-1,2-difluoroethane , 2011 .

[13]  J. Tamarit,et al.  Disorder effects on heat transport properties of orientationally disordered crystals , 2010 .

[14]  J. Rodríguez-Viejo,et al.  Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition: an in situ nanocalorimetric study. , 2010, Physical chemistry chemical physics : PCCP.

[15]  J. Rodríguez-Viejo,et al.  In situ nanocalorimetry of thin glassy organic films. , 2008, The Journal of chemical physics.

[16]  S. Hirabayashi,et al.  Anomalously high-density glass of ethylbenzene prepared by vapor deposition at temperatures close to the glass-transition temperature , 2008 .

[17]  Lian Yu,et al.  Influence of substrate temperature on the stability of glasses prepared by vapor deposition. , 2007, The Journal of chemical physics.

[18]  S. Melo,et al.  Structure and conformational analysis of CFC-113 by density functional theory calculations and FTIR spectroscopy , 2007 .

[19]  J. Rodríguez-Viejo,et al.  Design issues involved in the development of a membrane-based high-temperature nanocalorimeter , 2007 .

[20]  P. Lunkenheimer,et al.  Structural changes across the glass-transition in a glassy-crystal , 2007 .

[21]  Robert J. McMahon,et al.  Organic Glasses with Exceptional Thermodynamic and Kinetic Stability , 2007, Science.

[22]  J. Rodríguez-Viejo,et al.  Heat transfer in symmetric U-shaped microreactors for thin film calorimetry , 2006 .

[23]  Alois Loidl,et al.  Relaxation dynamics in plastic crystals , 2002 .

[24]  F. Trouw,et al.  Purely Dynamical Signature of the Orientational Glass Transition , 1999 .

[25]  P. Lunkenheimer,et al.  Is There an Excess Wing in the Dielectric Loss of Plastic Crystals , 1999 .

[26]  E. Rössler,et al.  Two glass transitions in ethanol: a comparative dielectric relaxation study of the supercooled liquid and the plastic crystal , 1998 .

[27]  D. Price,et al.  Quantitative Assessment of the Effects of Orientational and Positional Disorder on Glassy Dynamics , 1997 .

[28]  Birge,et al.  Universal scaling of the relaxation near a model glass transition. , 1994, Physical review letters.

[29]  V. P. Kolesov,et al.  Heat capacities, phase transitions, and thermodynamic functions of 1,1,2,2-tetrafluoro-1,2-dichloroethane and 1,1,2-trifluoro-1,2,2-trichloroethane , 1981 .

[30]  SugaHiroshi,et al.  Calorimetric Study of the Glassy State. XIV. Calorimetric Study on Unusual Glass Transition Phenomena in CFCl2–CFCl2 , 1978 .

[31]  H. Suga,et al.  Calorimetric Study of the Glassy State. XI. Plural Glass Transition Phenomena of Cyclohexene , 1977 .

[32]  H. Suga,et al.  Phase Changes in Crystalline and Glassy-Crystalline Cyclohexanol , 1968 .