On the stability of interacting processes with applications to filtering and genetic algorithms
暂无分享,去创建一个
[1] Jean Jacod,et al. Interacting Particle Filtering With Discrete Observations , 2001, Sequential Monte Carlo Methods in Practice.
[2] S. R. S. Varadhan. Large Deviations for Interacting Particle Systems , 1999 .
[3] D. Crisan,et al. A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .
[4] P. Moral. A uniform convergence theorem for the numerical solving of the nonlinear filtering problem , 1998 .
[5] R. Atar. Exponential stability for nonlinear filtering of diffusion processes in a noncompact domain , 1998 .
[6] P. Moral,et al. Large deviations for interacting particle systems: Applications to non-linear filtering , 1998 .
[7] Dan Crisan,et al. Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..
[8] P. Moral. Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems , 1998 .
[9] Jonathan E. Rowe,et al. Population Fixed-Points for Functions of Unitation , 1998, FOGA.
[10] Pierre Del Moral,et al. Discrete Filtering Using Branching and Interacting Particle Systems , 1998 .
[11] D. Crisan,et al. Nonlinear filtering and measure-valued processes , 1997 .
[12] Melanie Mitchell,et al. Finite populations induce metastability in evolutionary search , 1997 .
[13] A. Budhiraja,et al. Exponential stability of discrete-time filters for bounded observation noise , 1997 .
[14] R. Atar,et al. Lyapunov Exponents for Finite State Nonlinear Filtering , 1997 .
[15] R. Atar,et al. Exponential stability for nonlinear filtering , 1997 .
[16] Michael D. Vose. Logarithmic convergence of random heuristic search , 1994, Optics & Photonics.
[17] P. Moral. Nonlinear Filtering Using Random Particles , 1996 .
[18] D. Ocone,et al. Asymptotic Stability of the Optimal Filter with Respect toIts Initial Condition , 1996 .
[19] Michael D. Vose,et al. Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.
[20] Asymptotic ergodicity for the Zakai filtering equation. , 1995 .
[21] Alden H. Wright,et al. Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.
[22] R. S. Bucy. Lectures on Discrete Time Filtering , 1994 .
[23] École d'été de probabilités de Saint-Flour,et al. Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .
[24] Kenneth S. Alexander,et al. Spatial Stochastic Processes , 1991 .
[25] É. Pardoux,et al. Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .
[26] Ł. Stettner. Invariant measures of the pair: state, approximate filtering process , 1991 .
[27] Mark H. A. Davis,et al. Applied Stochastic Analysis , 1991 .
[28] H. Kunita. Ergodic Properties of Nonlinear Filtering Processes , 1991 .
[29] L. Stettner. On invariant measures of filtering processes , 1989 .
[30] Decision Systems.,et al. Lyapunov Exponents for Filtering Problems , 1988 .
[31] D. Ocone. Topics in Nonlinear Filtering Theory. , 1980 .
[32] M. Norman. Ergodicity of diffusion and temporal uniformity of diffusion approximation , 1977, Journal of Applied Probability.
[33] H. Kunita. Asymptotic behavior of the nonlinear filtering errors of Markov processes , 1971 .
[34] R. Dobrushin. Prescribing a System of Random Variables by Conditional Distributions , 1970 .
[35] R. Dobrushin. Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .
[36] O. Gaans. Probability measures on metric spaces , 2022 .