On the stability of interacting processes with applications to filtering and genetic algorithms

[1]  Jean Jacod,et al.  Interacting Particle Filtering With Discrete Observations , 2001, Sequential Monte Carlo Methods in Practice.

[2]  S. R. S. Varadhan Large Deviations for Interacting Particle Systems , 1999 .

[3]  D. Crisan,et al.  A particle approximation of the solution of the Kushner–Stratonovitch equation , 1999 .

[4]  P. Moral A uniform convergence theorem for the numerical solving of the nonlinear filtering problem , 1998 .

[5]  R. Atar Exponential stability for nonlinear filtering of diffusion processes in a noncompact domain , 1998 .

[6]  P. Moral,et al.  Large deviations for interacting particle systems: Applications to non-linear filtering , 1998 .

[7]  Dan Crisan,et al.  Convergence of a Branching Particle Method to the Solution of the Zakai Equation , 1998, SIAM J. Appl. Math..

[8]  P. Moral Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems , 1998 .

[9]  Jonathan E. Rowe,et al.  Population Fixed-Points for Functions of Unitation , 1998, FOGA.

[10]  Pierre Del Moral,et al.  Discrete Filtering Using Branching and Interacting Particle Systems , 1998 .

[11]  D. Crisan,et al.  Nonlinear filtering and measure-valued processes , 1997 .

[12]  Melanie Mitchell,et al.  Finite populations induce metastability in evolutionary search , 1997 .

[13]  A. Budhiraja,et al.  Exponential stability of discrete-time filters for bounded observation noise , 1997 .

[14]  R. Atar,et al.  Lyapunov Exponents for Finite State Nonlinear Filtering , 1997 .

[15]  R. Atar,et al.  Exponential stability for nonlinear filtering , 1997 .

[16]  Michael D. Vose Logarithmic convergence of random heuristic search , 1994, Optics & Photonics.

[17]  P. Moral Nonlinear Filtering Using Random Particles , 1996 .

[18]  D. Ocone,et al.  Asymptotic Stability of the Optimal Filter with Respect toIts Initial Condition , 1996 .

[19]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.

[20]  Asymptotic ergodicity for the Zakai filtering equation. , 1995 .

[21]  Alden H. Wright,et al.  Simple Genetic Algorithms with Linear Fitness , 1994, Evolutionary Computation.

[22]  R. S. Bucy Lectures on Discrete Time Filtering , 1994 .

[23]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[24]  Kenneth S. Alexander,et al.  Spatial Stochastic Processes , 1991 .

[25]  É. Pardoux,et al.  Filtrage Non Lineaire Et Equations Aux Derivees Partielles Stochastiques Associees , 1991 .

[26]  Ł. Stettner Invariant measures of the pair: state, approximate filtering process , 1991 .

[27]  Mark H. A. Davis,et al.  Applied Stochastic Analysis , 1991 .

[28]  H. Kunita Ergodic Properties of Nonlinear Filtering Processes , 1991 .

[29]  L. Stettner On invariant measures of filtering processes , 1989 .

[30]  Decision Systems.,et al.  Lyapunov Exponents for Filtering Problems , 1988 .

[31]  D. Ocone Topics in Nonlinear Filtering Theory. , 1980 .

[32]  M. Norman Ergodicity of diffusion and temporal uniformity of diffusion approximation , 1977, Journal of Applied Probability.

[33]  H. Kunita Asymptotic behavior of the nonlinear filtering errors of Markov processes , 1971 .

[34]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[35]  R. Dobrushin Central Limit Theorem for Nonstationary Markov Chains. II , 1956 .

[36]  O. Gaans Probability measures on metric spaces , 2022 .