Trends and challenges in modeling glioma using 3D human brain organoids

[1]  Jay Gopalakrishnan,et al.  SARS‐CoV‐2 targets neurons of 3D human brain organoids , 2020, The EMBO journal.

[2]  Howon Lee,et al.  Rapid Processing and Drug Evaluation in Glioblastoma Patient-Derived Organoid Models with 4D Bioprinted Arrays , 2020, iScience.

[3]  J. Knoblich,et al.  Human organoids: model systems for human biology and medicine , 2020, Nature Reviews Molecular Cell Biology.

[4]  L. Ricci-Vitiani,et al.  Rapid and Efficient Invasion Assay of Glioblastoma in Human Brain Organoids. , 2020, Cell reports.

[5]  E. Gabriel,et al.  Human Brain Organoids to Decode Mechanisms of Microcephaly , 2020, Frontiers in Cellular Neuroscience.

[6]  A. Feuchtinger,et al.  The Intratumoral Heterogeneity Reflects the Intertumoral Subtypes of Glioblastoma Multiforme: A Regional Immunohistochemistry Analysis , 2020, Frontiers in Oncology.

[7]  R. Azzarelli Organoid Models of Glioblastoma to Study Brain Tumor Stem Cells , 2020, Frontiers in Cell and Developmental Biology.

[8]  M. Tartaglia,et al.  Modeling medulloblastoma in vivo and with human cerebellar organoids , 2020, Nature Communications.

[9]  H. Clevers,et al.  Human Organoids: Tools for Understanding Biology and Treating Diseases. , 2020, Annual review of pathology.

[10]  Zev A. Binder,et al.  A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity , 2019, Cell.

[11]  S. Pașca,et al.  Organoid and Assembloid Technologies for Investigating Cellular Crosstalk in Human Brain Development and Disease. , 2019, Trends in cell biology.

[12]  Max A. Horlbeck,et al.  CRISPRi-based radiation modifier screen identifies long non-coding RNA therapeutic targets in glioma , 2019, Genome Biology.

[13]  Jeffrey H. Chuang,et al.  LONGITUDINAL MOLECULAR TRAJECTORIES OF DIFFUSE GLIOMA IN ADULTS , 2019, Nature.

[14]  F. Hyder,et al.  Development of human brain organoids with functional vascular-like system , 2019, Nature Methods.

[15]  A. Brand,et al.  Neural stem cell dynamics: the development of brain tumours. , 2019, Current opinion in cell biology.

[16]  X. Breakefield,et al.  Glioblastoma-Associated Microglia Reprogramming Is Mediated by Functional Transfer of Extracellular miR-21 , 2019, Cell reports.

[17]  Shawn M. Gillespie,et al.  Electrical and synaptic integration of glioma into neural circuits , 2019, Nature.

[18]  Mariella G. Filbin,et al.  An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma , 2019, Cell.

[19]  J. Gopalakrishnan The Emergence of Stem Cell‐Based Brain Organoids: Trends and Challenges , 2019, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  Sean K. Simmons,et al.  Individual brain organoids reproducibly form cell diversity of the human cerebral cortex , 2019, Nature.

[21]  F. Svensson,et al.  Therapy for glioblastoma: is it working? , 2019, Drug discovery today.

[22]  Gabriele Schackert,et al.  Evolutionary Trajectories of IDHWT Glioblastomas Reveal a Common Path of Early Tumorigenesis Instigated Years ahead of Initial Diagnosis. , 2019, Cancer cell.

[23]  S. Paek,et al.  A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy , 2019, Nature Biomedical Engineering.

[24]  H. Fine,et al.  Modeling Patient-Derived Glioblastoma with Cerebral Organoids. , 2019, Cell reports.

[25]  Giles W. Robinson,et al.  Challenges to curing primary brain tumours , 2019, Nature Reviews Clinical Oncology.

[26]  R. Kahn,et al.  Microglia innately develop within cerebral organoids , 2018, Nature Communications.

[27]  S. Sloan,et al.  Generation and assembly of human brain region–specific three-dimensional cultures , 2018, Nature Protocols.

[28]  J. Bagley,et al.  Genetically engineered cerebral organoids model brain tumour formation , 2018, Nature Methods.

[29]  A. Philpott,et al.  The developmental origin of brain tumours: a cellular and molecular framework , 2018, Development.

[30]  Inder M Verma,et al.  Glioblastoma Model Using Human Cerebral Organoids , 2018, Cell reports.

[31]  G. Govindaiah,et al.  Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration. , 2017, Cell stem cell.

[32]  A. Olivi,et al.  The clinical value of patient-derived glioblastoma tumorspheres in predicting treatment response , 2017, Neuro-oncology.

[33]  D. Sher,et al.  Radiation plus Temozolomide in Patients with Glioblastoma. , 2017, The New England journal of medicine.

[34]  Madeline A. Lancaster,et al.  Self‐organized developmental patterning and differentiation in cerebral organoids , 2017, The EMBO journal.

[35]  Jonathan A. Bernstein,et al.  Assembly of functionally integrated human forebrain spheroids , 2017, Nature.

[36]  Daniel R. Berger,et al.  Cell diversity and network dynamics in photosensitive human brain organoids , 2017, Nature.

[37]  E. Gabriel,et al.  Generation of iPSC-derived Human Brain Organoids to Model Early Neurodevelopmental Disorders. , 2017, Journal of visualized experiments : JoVE.

[38]  Milos Nikolic,et al.  Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids. , 2017, Cell stem cell.

[39]  L. Parada,et al.  Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma , 2016, Cold Spring Harbor symposia on quantitative biology.

[40]  Daniel R Weinberger,et al.  Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. , 2016, Cell stem cell.

[41]  David W. Nauen,et al.  Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure , 2016, Cell.

[42]  Qiulian Wu,et al.  A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. , 2016, Cancer research.

[43]  A. Hyman,et al.  CPAP promotes timely cilium disassembly to maintain neural progenitor pool , 2016, The EMBO journal.

[44]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[45]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[46]  Voichita D. Marinescu,et al.  The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes , 2015, EBioMedicine.

[47]  D. Geschwind,et al.  Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture , 2015, Nature Methods.

[48]  Parag Mallick,et al.  Neuronal Activity Promotes Glioma Growth through Neuroligin-3 Secretion , 2015, Cell.

[49]  M. Eiraku,et al.  Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex , 2013, Proceedings of the National Academy of Sciences.

[50]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[51]  H. Woo,et al.  Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ. , 2013, Cell reports.

[52]  Tamas L. Horvath,et al.  Modeling human cortical development in vitro using induced pluripotent stem cells , 2012, Proceedings of the National Academy of Sciences.

[53]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[54]  S. Ansari,et al.  Isolation and expansion of human glioblastoma multiforme tumor cells using the neurosphere assay. , 2011, Journal of visualized experiments : JoVE.

[55]  I. Date,et al.  Angiogenesis and invasion in glioma , 2011, Brain Tumor Pathology.

[56]  M. Tate,et al.  Biology of angiogenesis and invasion in glioma , 2009, Neurotherapeutics.

[57]  Mark Bernstein,et al.  Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. , 2009, Cell stem cell.

[58]  Yoshiki Sasai,et al.  Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. , 2008, Cell stem cell.

[59]  J. Xuereb,et al.  High grade glioma: imaging combined with pathological grade defines management and predicts prognosis. , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[60]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[61]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[62]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[63]  F. DiMeco,et al.  Erratum: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma (Cancer Research (October 2004) 64 (7011-7021) , 2004 .

[64]  Ugo Orfanelli,et al.  Isolation and Characterization of Tumorigenic, Stem-like Neural Precursors from Human Glioblastoma , 2004, Cancer Research.

[65]  Jan C Buckner,et al.  Factors influencing survival in high-grade gliomas. , 2003, Seminars in oncology.

[66]  J. Holtfreter Neural differentiation of ectoderm through exposure to saline solution , 1944 .

[67]  R. G. Harrison,et al.  Observations on the living developing nerve fiber , 1906 .

[68]  H. Weishaupt,et al.  Deregulated proliferation and differentiation in brain tumors , 2014, Cell and Tissue Research.