Adiabatic limit, Bismut-Freed connection, and the real analytic torsion form

Abstract For a complex flat vector bundle over a fibered manifold, we consider the 1-parameter family of certain deformed sub-signature operators introduced by Ma-Zhang in [Math. Ann. 340: 569–624, 340]. We compute the adiabatic limit of the Bismut-Freed connection associated to this family and show that the Bismut-Lott analytic torsion form shows up naturally under this procedure.

[1]  X. Ma,et al.  Eta-invariants, torsion forms and flat vector bundles , 2004, math/0405599.

[2]  Zhangweiping SUB-SIGNATURE OPERATORS, η-INVARIANTS AND A RIEMANN-ROCH THEOREM FOR FLAT VECTOR BUNDLES , 2004 .

[3]  W. Dwyer,et al.  A parametrized index theorem for the algebraicK-theory Euler class , 2003 .

[4]  Xiaonan Ma,et al.  Functoriality of real analytic torsion forms , 2002 .

[5]  T. Schick,et al.  TORSION AND FIBRATIONS , 1997, dg-ga/9707010.

[6]  R. Melrose,et al.  An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary , 1997 .

[7]  R. Melrose,et al.  Families of Dirac operators, boundaries and the $b$-calculus , 1997 .

[8]  J. Bismut,et al.  Flat vector bundles, direct images and higher real analytic torsion , 1995 .

[9]  D. Freed,et al.  η‐invariants and determinant lines , 1994, hep-th/9405012.

[10]  J. Bismut,et al.  Quillen metrics and higher analytic torsion forms. , 1994 .

[11]  J. Bismut,et al.  An extension of a theorem by Cheeger and Müller , 1992 .

[12]  D. Freed Reidemeister torsion, spectral sequences, and Brieskorn spheres. , 1992 .

[13]  X. Dai Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence , 1991 .

[14]  J. Cheeger,et al.  Families index for manifolds with boundary, superconnections and cones. II. The Chern character , 1990 .

[15]  J. Cheeger,et al.  Families index for manifolds with boundary, superconnections, and cones. I, Families of manifolds with boundary and Dirac operators , 1990 .

[16]  J. Cheeger,et al.  Eta invariants and their adiabatic limits , 1989 .

[17]  J. Cheeger $\eta$-invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation , 1987 .

[18]  J. Bismut,et al.  The analysis of elliptic families , 1986 .

[19]  J. Bismut The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs , 1986 .

[20]  D. Quillen Superconnections and the Chern character , 1985 .

[21]  E. Witten Global gravitational anomalies , 1985 .

[22]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian geometry. III , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian geometry. II , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian Geometry. I , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  I. Singer,et al.  R-Torsion and the Laplacian on Riemannian manifolds , 1971 .