The impact of annealing temperature and time on the electrical performance of Ti/Pt thin films

Abstract In this study, we focus on the influence of annealing time t PDA (i.e. 30 min and 630 min) on the room-temperature resistivity of electron-beam-evaporated titanium/platinum thin films when exposed to thermal loads up to temperatures T PDA of 700 °C. The titanium has a fixed thickness of 5 nm and serves as an adhesion layer. The thickness d f ,Pt of the platinum top layer is varied between 21 and 97 nm. Up to annealing temperatures of 450 °C, the film resistivity of the bi-layer system is linearly correlated with the reciprocal platinum film thickness independent of t PDA , as expected from the size effect. At t PDA  = 30 min, the change in intrinsic film stress dominates the electrical behavior in this annealing regime, predominantly at large d f ,Pt values. Compared to t PDA  = 630 min, however, the increase in resistivity especially at low platinum film thickness is substantially larger demonstrating that titanium starts to diffuse at these long annealing times even at moderate temperatures. At T PDA  = 600 °C, the diffusion of titanium into the top layer leads to an enhanced increase in film resistivity ρ f , especially at low platinum thicknesses and low annealing times, as the mean penetration depth of diffused titanium is under these conditions in order of d f ,Pt . Above T PDA  = 600 °C, ρ f is slightly increased at t PDA  = 30 min. At t PDA  = 630 min, however, the film resistivity is decreased at d f ,Pt d f ,Pt resulting predominantly in Ti x O y formation on the top film surface and hence, having low impact on ρ f .

[1]  Pascal Mailley,et al.  Thin film platinum cuff electrodes for neurostimulation: in vitro approach of safe neurostimulation parameters. , 2004, Bioelectrochemistry.

[2]  Sung Tae Kim,et al.  Study on Microstructures and Interdiffusion Behavior in Pt/Ti/SiO2/Si and Pb(Zr, Ti)O3/Pt/Ti/SiO2/Si Multilayer Systems , 1995 .

[3]  Cr Tellier,et al.  Size Effects in Thin Films , 1982 .

[4]  V. P. Makarov,et al.  Grain size and recrystallization of TiN, ZrN, NbN, and CrN alloyed and multilayer films , 1995 .

[5]  Frédérick Mailly,et al.  Anemometer with hot platinum thin film , 2001 .

[6]  I. Brown,et al.  Electrical resistivity of vacuum-arc-deposited platinum thin films , 2000 .

[7]  Doris Schmitt-Landsiedel,et al.  Scaling properties and electromigration resistance of sputtered Ag metallization lines , 2001 .

[8]  C. Hwang,et al.  An analysis of imprinted hysteresis loops for a ferroelectric Pb(Zr,Ti)O3 thin film capacitor using the switching transient current measurements , 2009 .

[9]  Zhang Duan-ming,et al.  Effect of Bi2O3 seed layer on crystalline orientation and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by rf-magnetron sputtering method , 2009 .

[10]  K. Jensen,et al.  Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus , 1998 .

[11]  Jérôme Courbat,et al.  Reliability improvement of suspended platinum-based micro-heating elements , 2008 .

[12]  Lilin Li,et al.  Platinum resistive film CO sensor without selective layer , 2005 .

[13]  Thomas Geßner,et al.  Microstructural changes of Pt/Ti bilayer during annealing in different atmospheres — an XRD study , 1997 .

[14]  Robert E. Jones,et al.  Effects of anneal ambients and Pt thickness on Pt/Ti and Pt/Ti/TiN interfacial reactions , 1993 .

[15]  V. Urban,et al.  Microstructure Evolution and Grain Growth Kinetics in Annealed Nanocrystalline Chromium , 2007 .

[16]  M. DiBattista,et al.  Determination of diffusion in polycrystalline platinum thin films , 1999 .

[17]  Yunzhi Wang,et al.  Grain growth in sputtered nanoscale PdIn thin films , 2004 .

[18]  Ulrich Schmid,et al.  Effect of high temperature annealing on the electrical performance of titanium/platinum thin films , 2008 .

[19]  F. Génin,et al.  The effect of stress on grain boundary grooving , 1993 .

[20]  U. Schmid,et al.  Influence of thermal annealing on the resistivity of titanium/platinum thin films , 2006 .

[21]  A. W. Groenland,et al.  Stability of thin platinum films implemented in high-temperature microdevices , 2009 .

[22]  Y. Li,et al.  Analysis of mean square penetration depth in grain boundary diffusion , 1996 .

[23]  Ulrich Schmid,et al.  A volumetric flow sensor for automotive injection systems , 2008 .

[24]  W. C. Dautremont-Smith,et al.  Stress measurements of Pt/Ti/InP and Pt/Ti/SiO2/InP systems: In situ measurements through sintering and after rapid thermal processing , 1990 .

[25]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[26]  Sylvain Petitgrand,et al.  Characterization of static and dynamic optical actuation of Al microbeams by microscopic interferometry techniques , 2003 .

[27]  H. Hoffmann,et al.  Mean free path and density of conductance electrons in platinum determined by the size effect in extremely thin films , 1980 .

[28]  Wojtek Wlodarski,et al.  A thin-film sensing element for ozone, humidity and temperature , 2000 .

[29]  T. Tisone,et al.  Diffusion in Thin Film Ti–Au, Ti–Pd, and Ti–Pt Couples , 1972 .

[30]  B. Koel,et al.  Thermal stability of ultrathin titanium films on a Pt(111) substrate , 2004 .

[31]  W. De Ceuninck,et al.  The stability of Pt heater and temperature sensing elements for silicon integrated tin oxide gas sensors , 2000 .